The Level Generation Competition, part of the IEEE Computational Intelligence Society (CIS)-sponsored 2010 Mario AI Championship, was to our knowledge the world's first procedural content generation competition. Competitors participated by submitting level generators-software that generates new levels for a version of Super Mario Bros tailored to individual players' playing style. This paper presents the rules of the competition, the software used, the scoring procedure, the submitted level generators, and the results of the competition. We also discuss what can be learned from this competition, both about organizing procedural content generation competitions and about automatically generating levels for platform games. The paper is coauthored by the organizers of the competition (the first three authors) and the competitors.
Abstract. Behaviour trees provide the possibility of improving on existing Artificial Intelligence techniques in games by being simple to implement, scalable, able to handle the complexity of games, and modular to improve reusability. This ultimately improves the development process for designing automated game players. We cover here the use of behaviour trees to design and develop an AI-controlled player for the commercial real-time strategy game DEFCON. In particular, we evolved behaviour trees to develop a competitive player which was able to outperform the game's original AI-bot more than 50% of the time. We aim to highlight the potential for evolving behaviour trees as a practical approach to developing AI-bots in games.
Player classification has recently become a key aspect of game design in areas such as adaptive game systems, player behaviour prediction, player tutoring and non-player character design. Past research has focused on the design of hierarchical, preferencebased and probabilistic models aimed at modelling players' behaviour. We propose a meta-classification approach that breaks the clustering of gameplay mixed data into three levels of analysis. The first level uses dimensionality reduction and partitional clustering of aggregate game data in an action/skillbased classification. The second level applies similarity-based clustering of action sequences to group players according to their preferences. For this we propose a new approach which uses Rubner's Earth Mover's Distance (EMD) as a similarity metric to compare histograms of players' game world explorations. The third level applies a combination of social network analysis metrics, such as shortest path length, to social data to find clusters in the players' social network. We test our approach in a gameplay dataset from a freely available first-person social hunting game.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.