Molecular dynamics simulations were used to catalogue atomic scale structures of CdTe films grown on eight wurtzite (wz) and zinc-blende (zb) CdS surfaces. Polytypism, grain boundaries, dislocations and other film defects were detected. Dislocation lines were distributed in three distinct ways. For the growths on the wz {0001} and zb {111} surfaces, dislocations were found throughout the epilayers and formed a network at the interface. The dislocations within the films grown on the wz {1 100}, wz {112 0}, zb {1 10}, zb {010}, and zb { 1 } surfaces formed an interface network and also threaded from the interface towards the film's surface. In contrast, the growth on the zb {112 } surface only had dislocations localized to the interface. This film exhibited a different orientation from the substrate to reduce the lattice mismatch strain energies, and therefore, its misfit dislocation density. Our study indicates that the substrate orientation could be utilized to modify the morphology of dislocation networks in lattice mismatched multi-layered systems.
The growth dynamics and evolution of intrinsic stacking faults, lamellar, and double positioning twin grain boundaries were explored using molecular dynamics simulations during the growth of CdTe homoepitaxy and CdTe/CdS heteroepitaxy. Initial substrate structures were created containing either stacking fault or one type of twin grain boundary, and films were subsequently deposited to study the evolution of the underlying defect. Results show that during homoepitaxy the film growth was epitaxial and the substrate's defects propagated into the epilayer, except for the stacking fault case where the defect disappeared after the film thickness increased. In contrast, films grown on heteroepitaxy conditions formed misfit dislocations and grew with a small angle tilt (within ∼5°) of the underlying substrate's orientation to alleviate the lattice mismatch. Grain boundary proliferation was observed in the lamellar and double positioning twin cases. Our study indicates that it is possible to influence the propagation of high symmetry planar defects by selecting a suitable substrate defect configuration, thereby controlling the film defect morphology.
Molecular dynamics simulations of polycrystalline growth of CdTe/CdS heterostructures have been performed. First, CdS was deposited on an amorphous CdS substrate, forming a polycrystalline film. Subsequently, CdTe was deposited on top of the polycrystalline CdS film. Cross-sectional images show grain formation at early stages of the CdS growth. During CdTe deposition, the CdS structure remains almost unchanged. Concurrently, CdTe grain boundary motion was detected after the first 24.4 nanoseconds of CdTe deposition. With the elapse of time, this grain boundary pins along the CdS/CdTe interface, leaving only a small region of epitaxial growth. CdTe grains are larger than CdS grains in agreement with experimental observations in the literature. Crystal phase analysis shows that zinc blende structure dominates over the wurtzite structure inside both CdS and CdTe grains. Composition analysis shows Te and S diffusion to the CdS and CdTe films, respectively. These simulated results may stimulate new ideas for studying and improving CdTe solar cell efficiency.
Molecular dynamics (MD) simulations have been applied to study mobilities of Σ3, Σ7 and Σ11 grain boundaries in CdTe. First, an existing MD approach to drive the motion of grain boundaries in face-centered-cubic and body-centered-cubic crystals was generalized for arbitrary crystals. MD simulations were next performed to calculate grain boundary velocities in CdTe crystals at different temperatures, driving forces, and grain boundary terminations. Here a grain boundary is said to be Te-terminated if its migration encounters sequentially C d · T e − C d · T e … planes, where “·” and “−” represent short and long spacing respectively. Likewise, a grain boundary is said to be Cd-terminated if its migration encounters sequentially T e · C d − T e · C d … planes. Grain boundary mobility laws, suitable for engineering time and length scales, were then obtained by fitting the MD results to Arrhenius equation. These studies indicated that the Σ3 grain boundary has significantly lower mobility than the Σ7 and Σ11 grain boundaries. The Σ7 Te-terminated grain boundary has lower mobility than the Σ7 Cd-terminated grain boundary, and that the Σ11 Cd-terminated grain boundary has lower mobility than the Σ11 Te-terminated grain boundary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.