Coffee, cashew and avocado are of high socio-economic importance in many tropical smallholder farming systems around the globe. As plantation crops with a long lifespan, their cultivation requires long-term planning. The evaluation of climate change impacts on their biophysical suitability is therefore essential for developing adaptation measures and selecting appropriate varieties or crops. In this study, we modelled the current and future suitability of coffee arabica, cashew and avocado on a global scale based on climatic and soil requirements of the three crops. We used climate outputs of 14 global circulation models based on three emission scenarios to model the future (2050) climate change impacts on the crops both globally and in the main producing countries. For all three crops, climatic factors, mainly long dry seasons, mean temperatures (high and low), low minimum temperatures and annual precipitation (high and low), were more restrictive for the global extent of suitable growing regions than land and soil parameters, which were primarily low soil pH, unfavourable soil texture and steep slopes. We found shifts in suitable growing regions due to climate change with both regions of future expansion and contraction for all crops investigated. Coffee proved to be most vulnerable, with negative climate impacts dominating in all main producing regions. For both cashew and avocado, areas suitable for cultivation are expected to expand globally while in most main producing countries, the areas of highest suitability may decrease. The study reveals that climate change adaptation will be necessary in most major producing regions of all three crops. At high latitudes and high altitudes, however, they may all profit from increasing minimum temperatures. The study presents the first global assessment of climate change impacts on cashew and avocado suitability.
Background and aims Zinc (Zn) deficiency is a global problem in human nutrition due to imbalanced diets based on staple foods of low Zn contents. This study investigated the potential of using clover (Trifolium alexandrinum L.) and mustard (Sinapis alba L.) green manure crops to increase soil Zn uptake by wheat (Trifolium aestivum L.) without enhancing cadmium (Cd) accumulation. Methods A factorial pot experiment with wheat was performed with three green manure treatments (clover, mustard or no green manure) and three soil treatments which were a high-Zn soil (FYM), a low-Zn soil (TURK) and the TURK soil with mineral Zn fertilization (TURK+ZN). Green manure crops were grown first and then incorporated into the soils before wheat. Results In contrast to mustard, clover increased grain Zn concentrations in the FYM and TURK+ZN soils, but not in the TURK soil. The effect appeared to be due to high soil nitrogen inputs and concurrent pH decrease, root biomass increase, and the release of organic ligands mobilizing soil Zn and Cd. However, the high N inputs also induced Cd accumulation above critical thresholds.
ConclusionsThe study suggests that on Zn sufficient soils or in combination with Zn fertilizer, leguminous green manure can increase soil Zn accumulation by wheat.
Zinc (Zn) nutrition is of key relevance in India, as a large fraction of the population suffers from Zn malnutrition and many soils contain little plant available Zn. In this study we compared organic and conventional wheat cropping systems with respect to DTPA (diethylene triamine pentaacetic acid)-extractable Zn as a proxy for plant available Zn, yield, and grain Zn concentration. We analyzed soil and wheat grain samples from 30 organic and 30 conventional farms in Madhya Pradesh (central India), and conducted farmer interviews to elucidate sociological and management variables. Total and DTPA-extractable soil Zn concentrations and grain yield (3400 kg ha-1) did not differ between the two farming systems, but with 32 and 28 mg kg-1 respectively, grain Zn concentrations were higher on organic than conventional farms (t = -2.2, p = 0.03). Furthermore, multiple linear regression analyses revealed that (a) total soil zinc and sulfur concentrations were the best predictors of DTPA-extractable soil Zn, (b) Olsen phosphate taken as a proxy for available soil phosphorus, exchangeable soil potassium, harvest date, training of farmers in nutrient management, and soil silt content were the best predictors of yield, and (c) yield, Olsen phosphate, grain nitrogen, farmyard manure availability, and the type of cropping system were the best predictors of grain Zn concentration. Results suggested that organic wheat contained more Zn despite same yield level due to higher nutrient efficiency. Higher nutrient efficiency was also seen in organic wheat for P, N and S. The study thus suggests that appropriate farm management can lead to competitive yield and improved Zn concentration in wheat grains on organic farms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.