BACKGROUND-Duplications and deletions in the human genome can cause disease or predispose persons to disease. Advances in technologies to detect these changes allow for the routine identification of submicroscopic imbalances in large numbers of patients.
Despite their clinical significance, characterization of balanced chromosomal abnormalities (BCAs) has largely been restricted to cytogenetic resolution. We explored the landscape of BCAs at nucleotide resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome sequencing revised 93% of karyotypes and revealed complexity that was cryptic to karyotyping in 21% of BCAs, highlighting the limitations of conventional cytogenetic approaches. At least 33.9% of BCAs resulted in gene disruption that likely contributed to the developmental phenotype, 5.2% were associated with pathogenic genomic imbalances, and 7.3% disrupted topologically associated domains (TADs) encompassing known syndromic loci. Remarkably, BCA breakpoints in eight subjects altered a single TAD encompassing MEF2C, a known driver of 5q14.3 microdeletion syndrome, resulting in decreased MEF2C expression. This study proposes that sequence-level resolution dramatically improves prediction of clinical outcomes for balanced rearrangements, and provides insight into novel pathogenic mechanisms such as altered regulation due to changes in chromosome topology.
Defined growth conditions are essential for many applications of human embryonic stem cells (hESC). Most defined media are presently used in combination with Matrigel, a partially defined extracellular matrix (ECM) extract from mouse sarcoma. Here, we defined ECM requirements of hESC by analyzing integrin expression and ECM production and determined integrin function using blocking antibodies. hESC expressed all major ECM proteins and corresponding integrins. We then systematically replaced Matrigel with defined medium supplements and ECM proteins. Cells attached efficiently to natural human vitronectin, fibronectin, and Matrigel but poorly to laminin ؉ entactin and collagen IV. Integrin-blocking antibodies demonstrated that ␣V5 integrins mediated adhesion to vitronectin, ␣51 mediated adhesion to fibronectin, and ␣61 mediated adhesion to laminin ؉ entactin. Fibronectin in feeder cell-conditioned medium partially supported growth on all natural matrices, but in defined, nonconditioned medium only Matrigel or (natural and recombinant) vitronectin was effective. Recombinant vitronectin was the only defined functional alternative to Matrigel, supporting sustained self-renewal and pluripotency in three independent hESC lines. STEM
A variety of mutational mechanisms shape the dynamic architecture of human genomes and occasionally result in congenital defects and disease. Here, we used genome-wide long mate-pair sequencing to systematically screen for inherited and de novo structural variation in a trio including a child with severe congenital abnormalities. We identified 4321 inherited structural variants and 17 de novo rearrangements. We characterized the de novo structural changes to the base-pair level revealing a complex series of balanced inter- and intra-chromosomal rearrangements consisting of 12 breakpoints involving chromosomes 1, 4 and 10. Detailed inspection of breakpoint regions indicated that a series of simultaneous double-stranded DNA breaks caused local shattering of chromosomes. Fusion of the resulting chromosomal fragments involved non-homologous end joining, since junction points displayed limited or no homology and small insertions and deletions. The pattern of random joining of chromosomal fragments that we observe here strongly resembles the somatic rearrangement patterns--termed chromothripsis--that have recently been described in deranged cancer cells. We conclude that a similar mechanism may also drive the formation of de novo structural variation in the germline.
Chromothripsis represents a novel phenomenon in the structural variation landscape of cancer genomes. Here, we analyze the genomes of ten patients with congenital disease who were preselected to carry complex chromosomal rearrangements with more than two breakpoints. The rearrangements displayed unanticipated complexity resembling chromothripsis. We find that eight of them contain hallmarks of multiple clustered double-stranded DNA breaks (DSBs) on one or more chromosomes. In addition, nucleotide resolution analysis of 98 breakpoint junctions indicates that break repair involves nonhomologous or microhomology-mediated end joining. We observed that these eight rearrangements are balanced or contain sporadic deletions ranging in size between a few hundred base pairs and several megabases. The two remaining complex rearrangements did not display signs of DSBs and contain duplications, indicative of rearrangement processes involving template switching. Our work provides detailed insight into the characteristics of chromothripsis and supports a role for clustered DSBs driving some constitutional chromothripsis rearrangements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.