Gatlin and Barrows are Chair and Vice-chair, respectively, of the Plant Products in Aquafeeds Working Group, and coordinated the development of this document; all other authors are listed in alphabetical order. AbstractContinued growth and intensi¢cation of aquaculture production depends upon the development of sustainable protein sources to replace ¢sh meal in aquafeeds. This document reviews various plant feedstu¡s, which currently are or potentially may be incorporated into aquafeeds to support the sustainable production of various ¢sh species in aquaculture. The plant feedstu¡s considered include oilseeds, legumes and cereal grains, which traditionally have been used as protein or energy concentrates as well as novel products developed through various processing technologies. The nutritional composition of these various feedstu¡s are considered along with the presence of any bioactive compounds that may positively or negatively a¡ect the target organism. Lipid composition of these feedstu¡s is not speci¢cally considered although it is recognized that incorporating lipid supplements in aquafeeds to achieve proper fatty acid pro¢les to meet the metabolic requirements of ¢sh and maximize human health bene¢ts are important aspects. Speci¢c strategies and techniques to optimize the nutritional composition of plant feedstu¡s and limit potentially adverse e¡ects of bioactive compounds are also described. Such information will provide a foundation for developing strategic research plans for increasing the use of plant feedstu¡s in aquaculture to reduce dependence of animal feedstu¡s and thereby enhance the sustainability of aquaculture.
Aquaculture's pressure on forage fisheries remains hotly contested. This article reviews trends in fishmeal and fish oil use in industrial aquafeeds, showing reduced inclusion rates but greater total use associated with increased aquaculture production and demand for fish high in long-chain omega-3 oils. The ratio of wild fisheries inputs to farmed fish output has fallen to 0.63 for the aquaculture sector as a whole but remains as high as 5.0 for Atlantic salmon. Various plant- and animal-based alternatives are now used or available for industrial aquafeeds, depending on relative prices and consumer acceptance, and the outlook for single-cell organisms to replace fish oil is promising. With appropriate economic and regulatory incentives, the transition toward alternative feedstuffs could accelerate, paving the way for a consensus that aquaculture is aiding the ocean, not depleting it.
The sustainability of aquaculture has been debated intensely since 2000, when a review on the net contribution of aquaculture to world fish supplies was published in Nature. This paper reviews the developments in global aquaculture from 1997 to 2017, incorporating all industry sub-sectors and highlighting the integration of aquaculture in the global food system. Inland aquaculture-especially in Asia-has contributed the most to global production volumes and food security. Major gains have also occurred in aquaculture feed efficiency and fish nutrition, lowering the fish-in-fish-out ratio for all fed species, although the dependence on marine ingredients persists and reliance on terrestrial ingredients has increased. The culture of both molluscs and seaweed is increasingly recognized for its ecosystem services; however, the quantification, valuation, and market development of these services remain rare. The potential for molluscs and seaweed to support global nutritional security is underexploited. Management of pathogens, parasites, and pests remains a sustainability challenge industry-wide, and the effects of climate change on aquaculture remain uncertain and difficult to validate. Pressure on the aquaculture industry to embrace comprehensive sustainability measures during this 20-year period have improved the governance, technology, siting, and management in many cases.
Aquafeed ingredients are global commodities used in livestock, poultry and companion animal feeds. Cost and availability are ditated less by demand from the aquafeed sector than by demand from other animal feed sectors and global production of grains and oilseeds. The exceptions are fishmeal and fish oil; use patterns have shifted over the past two decades resulting in nearly exclusive use of these products in aquafeeds. Supplies of fishmeal and oil are finite, making it necessary for the aquafeed sector to seek alternative ingredients from plant sources whose global production is sufficient to supply the needs of aquafeeds for the foreseeable future. Significant progress has been made over the past decade in reducing levels of fishmeal in commercial feeds for farmed fish. Despite these advances, the quantity of fishmeal used by the aquafeed sector has increased as aquaculture production has expanded. Thus, further reduction in percentages of fishmeal in aquafeeds will be necessary. For some species of farmed fish, continued reduction in fishmeal and fish oil levels is likely; complete replacement of fishmeal has been achieved in research studies. However, complete replacement of fishmeal in feeds for marine species is more difficult and will require further research efforts to attain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.