Ayapana triplinervis is a plant species used in traditional medicine and in mystical-religious rituals by traditional communities in the Amazon. The aim of this study are to develop a nano-emulsion containing essential oil from A. triplinervis morphotypes, to evaluate larvicidal activity against Aedes aegypti and acute oral toxicity in Swiss albino mice (Mus musculus). The essential oils were extracted by steam dragging, identified by gas chromatography coupled to mass spectrometry, and nano-emulsions were prepared using the low energy method. Phytochemical analyses indicated the major compounds, expressed as area percentage, β-Caryophyllene (45.93%) and Thymohydroquinone Dimethyl Ether (32.93%) in morphotype A; and Thymohydroquinone Dimethyl Ether (84.53%) was found in morphotype B. Morphotype A essential oil nano-emulsion showed a particle size of 101.400 ± 0.971 nm (polydispersity index = 0.124 ± 0.009 and zeta potential = -19.300 ± 0.787 mV). Morphotype B essential oil nano-emulsion had a particle size of 104.567 ± 0.416 nm (polydispersity index = 0.168 ± 0.016 and zeta potential = -27.700 ± 1.307 mV). Histomorphological analyses showed the presence of inflammatory cells in the liver of animals treated with morphotype A essential oil nano-emulsion (MAEON) and morphotype B essential oil nano-emulsion (MBEON). Congestion and the presence of transudate with leukocyte infiltration in the lung of animals treated with MAEON were observed. The nano-emulsions containing essential oils of A. triplinervis morphotypes showed an effective nanobiotechnological product in the chemical control of A. aegypti larvae with minimal toxicological action for non-target mammals.
The aim of this work was to prepare a nanoemulsion containing the essential oil of Protium heptaphyllum resin and to evaluate the larvicidal activity and the residual larvicidal effect against Aedes aegypti. The essential oil was identified by gas chromatography coupled to a mass spectrometer, and the nanoemulsions were prepared using a low-energy method and characterized by photon correlation spectroscopy. The results indicated the major constituents as p-cimene (27.70%) and α-Pinene (22.31%). Nanoemulsions had kinetic stability and a monomodal distribution in a hydrophilic-lipophilic balance of 14 with particle diameters of 115.56 ± 1.68 nn and zeta potential of −29.63 ± 3.46 mV. The nanoemulsion showed larvicidal action with LC50 = 2.91 µg∙mL−1 and residual larvicidal effect for 72 h after application to A. aegypti larvae. Consequently, the nanobiotechnological product derived from the essential oil of P. heptaphyllum resin could be used against infectious disease vectors.
Aeollanthus suaveolens species popularly known as catinga de mulata belongs to the Lamiaceae family. In the Amazon region, it is used in folk medicine for the treatment of gastritis, convulsions of epileptic origin, stomach pain and diarrhea in the form of tea and juice. Essential oils have analgesic, anti-inflammatory, and antimicrobial activity. This study evaluated the chemical composition of the A. suaveolens essential oil, and its cytotoxic, antimicrobial and antioxidant activity on Artemia salina Leach. The plant species was collected in Fazendinha district in the city of Macapa-AP. The essential oil obtained from the process was performed by hydrodistillation and identification of components by gas chromatography coupled with mass spectrometer. The antioxidant activity was evaluated by the kidnapping method of 2,2- diphenyl -1-picrilhidrazil radical, while the cytotoxic activity was assessed using saline A. and the microbiological activity was carried out by microdilution method with Escherichia coli, Salmonella sp. and Staphylococcus aureus bacteria. In a chromatographic analysis, the major constituents found in the essential oil of A. suaveolens were (E) -β-farnesene (37.615%), Linalool (33.375%), α-Santalene (3.255%) and linalyl acetate (3.222%). The results showed that the Escherichia coli and Salmonella sp. bacteria were more susceptible to MIC 50 mg.mL-1 when compared with the Staphylococcus aureus bacterium MIC 100 mg.mL-1. With respect to MBC concentration of 100 mg.mL-1 it was sufficient to inhibit the growth of E. coli. The essential oil did not show antioxidant activity, however, has a high cytotoxic activity against the A. salina, LC50 8.90 μg.mL-1.
The present study aimed to evaluate the chemical composition, antioxidant potential, and the cytotoxic and antimicrobial activity of the essential oil of the plant species Tithonia diversifolia (Hemsl) A. Gray. The essential oil obtained was used to identify the chemical compounds present through the techniques of GC-MS and NMR. The antioxidant potential was calculated by the sequestration method of 2,2-diphenyl-1-picrylhydrazyl. For cytotoxic activity, the larval mortality of Artemia salina was evaluated. The main chemical constituents identified are αpinene (9.9%), Limonene (5.40%), (Z)-β-ocimene (4.02%), p-cymen-8-ol (3.0%), Piperitone (11.72%), (E)-nerolidol (3.78%) and Spathulenol (10.8%). In the evaluation of the antimicrobial activity, bacterial strains of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were used. The results showed that the bacterium E. coli were more susceptible to the presence of the essential oil, presenting minimal inhibitory concentration at the concentrations that were exposed. The essential oil presented antioxidant activity of 54.6% at the concentration of 5 mg·mL−1 and provided a CI50 of 4.30. It was observed that the essential oil of this species was highly toxic against A. salina lavas, as its cytotoxic activity showed an LC50 of 3.11. Thus, it is concluded that T. diversifolia oils are effective in inhibiting bacterial growth and reducing oxidative stress.
This study evaluated the larvicidal activity of Origanum majorana Linnaeus essential oil, identified the chemical composition, evaluated the antimicrobial, cytotoxic and antioxidant potential. The larvicidal activity was evaluated against larvae of the third stage of Aedes aegypti Linaeus, whereas the chemical composition was identified by gas chromatography coupled to mass spectrometer, the antimicrobial activity was carried out against the bacteria Pseudomonas aeruginosa , Escherichia coli and Staphylococcus auereus , the antioxidant activity was evaluated from of 2.2-diphenyl-1-picryl-hydrazila sequestration and Artemia salina Leach cytotoxicity. Regarding to the results, the larvicidal activity showed that O . majorana L. essential oil caused high mortality in A . aegypti L. larvae. In the chromatographic analysis, the main component found in O . majorana L. essential oil was pulegone (57.05%), followed by the other components verbenone (16.92%), trans-p-menthan-2-one (8.57%), iso-menthone (5.58%), piperitone (2.83%), 3-octanol (2.35%) and isopulegol (1.47%). The antimicrobial activity showed that E . coli and P . aeruginosa bacteria were more sensitive to oil than S . aureus , which was resistant at all concentrations. Essential oil did not present antioxidant activity, but it has high cytotoxic activity against A . salina L.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.