Meniscal damage is a common problem that accelerates the onset of knee osteoarthritis. Stem cell-based tissue engineering treatment approaches have shown promise in preserving meniscal tissue and restoring meniscal function. The purpose of our study was to identify meniscus-derived stem/progenitor cells (MSPCs) from mouse, a model system that allows for in vivo analysis of the mechanisms underlying meniscal injury and healing. MSPCs were isolated from murine menisci grown in explant culture and characterized for stem cell properties. Flow cytometry was used to detect the presence of surface antigens related to stem cells, and qRT-PCR was used to examine the gene expression profile of MSPCs. Major proteins associated with MSPCs were localized in the adult mouse knee using immunohistochemistry. Our data show that MSPCs have universal stem cell-like properties including clonogenicity and multi-potentiality. MSPCs expressed the mesenchymal stem cell markers CD44, Sca-1, CD90, and CD73 and when cultured had elevated levels of biglycan and collagen type I, important extracellular matrix components of adult meniscus. MSPC also expressed significant levels of Lox and Igf-1, genes associated with the embryonic meniscus. Localization studies showed staining for these same proteins in the superficial and outer zones of the adult mouse meniscus, regions thought to harbor endogenous repair cells. MSPCs represent a novel resident stem cell population in the murine meniscus. Analysis of MSPCs in mice will allow for a greater understanding of the cell biology of the meniscus, essential information for enhancing therapeutic strategies for treating knee joint injury and disease.
Mesenchymal stem cells (MSCs) have been widely used in allogeneic stem cell transplantation. We compared immunologic and hematopoietic characteristics of MSCs derived from whole human umbilical cord (UC), as well as from different sections of UCs, including the amniotic membrane (AM), Wharton's jelly (WJ), and umbilical vessel (UV). Cell phenotypes were examined by flow cytometry. Lymphocyte transformation test and mixed lymphocyte reaction were performed to evaluate the immuno-modulatory activity of MSCs derived from UCs. The mRNA expression of cytokines was detected by realtime polymerase chain reaction. Hematopoietic function was studied by co-culturing MSCs with CD34 1 cells isolated from cord blood. Our results showed that MSCs separated from these four different sections including UC, WJ, UV, and AM had similar biological characteristics. All of the MSCs had multi-lineage differentiation ability and were able to differentiate into osteoblasts, adipocytes, and chondrocytes. The MSCs also inhibited the proliferation of allogeneic T cells in a dose-dependent manner. The relative mRNA expression of cytokines was examined, and the results showed that UCMSCs had higher interleukin-6 (IL6), IL11, stem cell factor, and FLT3 expression than MSCs derived from specific sections of UCs. CD34 1 cells had high propagation efficiencies when co-cultured with MSCs derived from different sections of UCs, among which UCMSCs are the most efficient feeding layer. Our study demonstrated that MSCs could be isolated from whole UC or specific sections of UC with similar immunomodulation and hematopoiesis supporting characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.