A set
A
⊆
ω
A\subseteq \omega
is cototal if it is enumeration reducible to its complement,
A
¯
\overline {A}
. The skip of
A
A
is the uniform upper bound of the complements of all sets enumeration reducible to
A
A
. These are closely connected:
A
A
has cototal degree if and only if it is enumeration reducible to its skip. We study cototality and related properties, using the skip operator as a tool in our investigation. We give many examples of classes of enumeration degrees that either guarantee or prohibit cototality. We also study the skip for its own sake, noting that it has many of the nice properties of the Turing jump, even though the skip of
A
A
is not always above
A
A
(i.e., not all degrees are cototal). In fact, there is a set that is its own double skip.
A coarse description of a set A ⊆ ω is a set D ⊆ ω such that the symmetric difference of A and D has asymptotic density 0. We study the extent to which noncomputable information can be effectively recovered from all coarse descriptions of a given set A, especially when A is effectively random in some sense. We show that if A is 1-random and B is computable from every coarse description D of A, then B is K-trivial, which implies that if A is in fact weakly 2-random then B is computable. Our main tool is a kind of compactness theorem for cone-avoiding descriptions, which also allows us to prove the same result for 1-genericity in place of weak 2-randomness. In the other direction, we show that if A T ∅ ′ is a 1-random set, then there is a noncomputable c.e. set computable from every coarse description of A, but that not all K-trivial sets are computable from every coarse description of some 1-random set. We study both uniform and nonuniform notions of coarse reducibility. A set Y is uniformly coarsely reducible to X if there is a Turing functional Φ such that if D is a coarse description of X, then Φ D is a coarse description of Y . A set B is nonuniformly coarsely reducible to A if every coarse description of A computes a coarse description of B. We show that a certain natural embedding of the Turing degrees into the coarse degrees (both uniform and nonuniform) is not surjective. We also show that if two sets are mutually weakly 3-random, then their coarse degrees form a minimal pair, in both the uniform and nonuniform cases, but that the same is not true of every pair of relatively 2-random sets, at least in the nonuniform coarse degrees.
We study the model-theoretic aspects of a probability logic suited for talking about measure spaces. This nonclassical logic has a model theory rather different from that of classical predicate logic. In general, not every satisfiable set of sentences has a countable model, but we show that one can always build a model on the unit interval. Also, the probability logic under consideration is not compact. However, using ultraproducts we can prove a compactness theorem for a certain class of weak models.
We show that there is a strong connection between Weihrauch reducibility on one hand, and provability in EL 0 , the intuitionistic version of RCA 0 , on the other hand. More precisely, we show that Weihrauch reducibility to the composition of finitely many instances of a theorem is captured by provability in EL 0 together with Markov's principle, and that Weihrauch reducibility is captured by an affine subsystem of EL 0 plus Markov's principle.2010 Mathematics Subject Classification. 03B30,03B20,03D30,03F35.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.