This paper presents a novel structure for compact dualband balun design. The proposed structure is based on modified Marchand (with the fourth port shorted). To achieve the desired dualband operation, two additional open-ended stubs are added to the two balanced ports of the modified Marchand balun. Explicit design equations are then derived using even-odd mode analysis. Finally, to verify the design concept, a microstrip balun operating at 0.9/2 GHz are fabricated on Duroid RO3210 printed circuit board. Measurement results are in good agreement with the theoretical predictions.
Liquid crystal displays (LCDs) and organic light emitting diodes (OLEDs) are the technology involved in electronic displays in order to get a better viewing angle and high-density resolution products. Fine-pitch, flip-chip interconnection is one method which is able to enhance the display performance with high color resolution. Nonconducting film (NCF) is a novel material developed for fine-pitch applications. This study investigates the temperature effect on the electrical contact performance of an NCFbonded chip-on-flexible (COF) substrate package. The changes in contact resistance after reflow at a peak temperature of 260 C for three times were measured with a four-point probe method. The bonding temperature has a significant effect on the peel strength of the NCF-bonded COF. A high peel strength for the NCF COF bonded at a high temperature indicated that the NCF obtained sufficient mechanical strength to hold the interconnection joints. A low bonding temperature is preferable to obtain good electrical contact, but sufficient high temperature is needed to ensure a good mechanical and reliable joint. An excessively high bonding temperature is to be avoided because it gives instant curing at the contact point which restricts good electrical conduction. An NCF with a curing degree of 86% was needed to ensure sufficient and reliable electrical joints in the COF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.