We present a new measurement of the positive muon magnetic anomaly, a µ ≡ (gµ − 2)/2, from the Fermilab Muon g −2 Experiment based on data collected in 2019 and 2020. We have analyzed more than four times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of two due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, ω′ p , and of the anomalous precession frequency corrected for beam dynamics effects, ωa. From the ratio ωa/ω ′ p , together with precisely determined external parameters, we determine a µ = 116 592 057(25) × 10 −11 (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain a µ (FNAL) = 116 592 055(24) × 10 −11 (0.20 ppm). The new experimental world average is aµ(Exp) = 116 592 059(22) × 10 −11 (0.19 ppm), which represents a factor of two improvement in precision.
The Mu2e experiment at Fermi National Accelerator Laboratory will search for the charged-lepton flavour-violating neutrinoless conversion of negative muons into electrons in the Coulomb field of an Al nucleus. The conversion electron with a monoenergetic 104.967 MeV signature will be identified by a complementary measurement carried out by a high-resolution tracker and an electromagnetic calorimeter, improving by four orders of magnitude the current single-event sensitivity. The calorimeter—composed of 1348 pure CsI crystals arranged in two annular disks—has a high granularity, 10% energy resolution and 500 ps timing resolution for 100 MeV electrons. The readout, based on large-area UV-extended SiPMs, features a fully custom readout chain, from the analogue front-end electronics to the digitisation boards. The readout electronics design was validated for operation in vacuum and under magnetic fields. An extensive radiation hardness certification campaign certified the FEE design for doses up to 100 krad and 1012 n1MeVeq/cm2 and for single-event effects. A final vertical slice test on the final readout chain was carried out with cosmic rays on a large-scale calorimeter prototype.
The Muon g−2 Experiment at Fermilab is expected to start data taking in 2017. It will measure the muon anomalous magnetic moment, aμ=(gμ−2)/2 to an unprecedented precision: the goal is 0.14 parts per million (ppm). The new experiment will require upgrades of detectors, electronics and data acquisition equipment to handle the much higher data volumes and slightly higher instantaneous rates. In particular, it will require a continuous monitoring and state-of-art calibration of the detectors, whose response may vary on both the millisecond and hour long timescale. The calibration system is composed of six laser sources and a light distribution system will provide short light pulses directly into each crystal (54) of the 24 calorimeters which measure energy and arrival time of the decay positrons. A Laser Control board will manage the interface between the experiment and the laser source, allowing the generation of light pulses according to specific needs including detector calibration, study of detector performance in running conditions, evaluation of DAQ performance. Here we present and discuss the main features of the Laser Control board.
The PADME experiment is designed to search for a hypothetical dark photon A' produced in positron-electron annihilation using a bunched positron beam at the Beam Test Facility of the INFN Laboratori Nazionali di Frascati. The expected sensitivity to the A' -photon mixing parameter ϵ is 10-3, for A' mass ≤ 23.5 MeV/c 2 after collecting ∼ 1013 positrons-on-target. This paper presents the PADME detector status after commissioning in July 2019. In addition, the software algorithms employed to reconstruct physics objects, such as photons and charged particles, and the calibration procedures adopted are illustrated in detail. The results show that the experimental apparatus reaches the design performance, and is able to identify and measure standard electromagnetic processes, such as positron bremsstrahlung and electron-positron annihilation into two photons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.