Using nonlocal empirical pseudopotentials, we compute the band structure and shear deformation potentials of strained Si, Ge, and SiGe alloys. Fitting the theoretical results to experimental data on the phonon-limited carrier mobilities in bulk Si and Ge, the dilatation deformation potential Ξd is found to be 1.1 eV for the Si Δ minima, −4.4 eV for the Ge L minima, corresponding to a value for the valence band dilatation deformation potential a of approximately 2 eV for both Si and Ge. The optical deformation potential d0 is found to be 41.45 and 41.75 eV for Si and Ge, respectively. Carrier mobilities in strained Si and Ge are then evaluated. The results show a large enhancement of the hole mobility for both tensile and compressive strain along the [001] direction, but only a modest enhancement (approximately 60%) of the electron mobility for tensile biaxial strain in Si. Finally, from a fit to carrier mobilities in relaxed SiGe alloys, the effective alloy scattering potential is determined to be about 0.7 eV for electrons, 0.9±0.1 eV for holes, and the low-field mobilities in strained alloys can be evaluated. The results show that alloy scattering completely cancels any gain expected from the lifting of the valleys/bands degeneracy caused by the strain.
The physics of electron transport in Si and GaAs is investigated with use of a Monte Carlo technique which improves the "state-of-the-art" treatment of high-energy carrier dynamics. (1) The semiconductor is modeled beyond the effective-mass approximation by using the band structure obtained from empirical-pseudopotential calculations.(2) The electron-phonon, electron-impurity, and electron-electron scattering rates are computed in a way consistent with the full band structure of the solid, thus accounting for density-of-states and matrix-element effects more accurately than previous transport formulations. (3) The long-range carrier-carrier interaction and space-charge effects are included by coupling the Monte Carlo simulation to a self-consistent two-dimensional Poisson solution updated at a frequency large enough to resolve the plasma oscillations in highly doped regions. The technique is employed to study experimental submicrometer Si field-effect transistors with channel lengths as small as 60 nm operating at 77 and 300 K. Velocity overshoot and highly nonlocal, off-equilibrium phenomena are investigated together with the role of electronelectron interaction in these ultrasmall structures. In the systems considered, the inclusion of the full band structure has the effect of reducing the amount of velocity overshoot via electron transfer to upper conduction valleys, particularly at large biases and low temperatures. The reasonableness of the physical picture is supported by the close agreement of the results of the simulation to available experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.