The genus Jatropha is native of tropical America with more than 200 species that are widely distributed in tropics with a promise for use as an oil crop for biodiesel. This investigation was carried out to assess the genetic diversity of 12 Jatropha species based on random amplified polymorphic DNA markers. From 26 random primers used, 18 primers gave reproducible amplification banding patterns of 112 polymorphic bands out of 134 bands scored accounting for 80.2% polymorphism across the genotypes. Three primers viz., OPA 4, OPF 11, and OPD 14 generated 100% polymorphic patterns. The polymorphic information content was highest for the primer OPD 14 (0.50) followed by the primers OPF 11 and OPAD 11 (0.48). Jaccard's coefficient of similarity varied from 0.00 to 0.85, indicative of high level of genetic variation among the genotypes studied. UPGMA cluster analysis indicated three distinct clusters, one comprising all accessions of J. curcas L., while second included six species viz., J. ramanadensis Ramam., J. gossypiifolia L., J. podagrica Hook., J. tanjorensis J. L. Ellis et Saroja J. villosa Wight and J. integerrima Jacq. J. glandulifera Roxb. remained distinct and formed third cluster indicating its higher genetic distinctness from other species. The overall grouping pattern of clustering corresponds well with principal component analysis confirming patterns of genetic diversity observed among the species. The result provides valid guidelines for collection, conservation and characterization of Jatropha genetic resources.
The wild species of Sesamum have long been recognized as an important source of many valuable pest and disease resistance genes and other novel traits such as male sterility and plant type for the cultivated taxon. Utilization of these species in crop improvement is marginal because of their inherent low crossability with the cultigen. An understanding of the biological nature of incompatibility systems that impede hybridization offers tools for successful introgressions into cultivated sesame. The objective of this investigation was to observe pollen germination and pollen tube growth in cross pollinated S. indicum pistils as an indicator of pre-zygotic barriers operating in wide crosses involving S. indicum. Three wild species: S. alatum, S. radiatum and S. laciniatum were used as pollen donors in hybridization with S. indicum. In the cross S. indicum · S. alatum 85.23% of pollen grains germinated and pollen tubes reached ovaries within 8 h after pollination. In other two crosses, S. indicum · S. laciniatum and S. indicum · S. radiatum the level of incompatibility was high as evidenced by a reduced pollen germination and slow rate of pollen tube growth. Measures to circumvent incompatibility in these crosses to produce interspecific hybrids are discussed.
Interspecific hybridization among species of cotton has lead to improvement in productivity, earliness, fibre quality and resistance to pests and diseases. However, wide crosses is often limited by the operation of either pre-or/and post-fertilization barriers. An investigation on pollen tube behaviour of four wild species in the pistils of Gossypium hirsutum was taken up. Pollen germination was normal in crosses involving Gossypium triphyllum and Gossypium armourianum and markedly inhibited in the crosses involving Gossypium davidsonii and Gossypium thurberi. Pollen tubes reached the pistils and fertilization was accomplished within 8 h after pollination (HAP) in control cross. Even though delay in pollen tube was a common phenomenon in all the four crosses successful fertilization was observed in crosses involving G. triphyllum and G. armourianum, as they reached the ovary at 24 HAP. In crosses with G. davidsonii and G. thurberi, pollen tubes failed to reach the ovary even at 24 HAP indicating the presence of strong stylar and ovarian incompatibility. Measures to overcome such barriers to interspecific hybridization in the incompatible crosses are discussed.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.