Abstract:The National Oceanic and Atmospheric Administration's National Environmental Satellite Data and Information Service (NOAA/NESDIS) Interactive Multisensor Snow and Ice Mapping System (IMS) has undergone substantial changes since its inception in 1997. These changes include the data sources used to generate the product, methodology of product creation, and even changes in the output. Among the most notable of the past upgrades to the IMS are a 4-km resolution grid output, ingest of an automated snow detection algorithm, expansion to a global extent, and a static Digital Elevation Model for mapping based on elevation. Further developments to this dynamic system will continue as NOAA strives to improve snow parameterization for weather forecast modeling. Several future short-term enhancements will be evaluated for possible transition to operations before the Northern Hemisphere winter of 2006-2007. Current and historical data will be adopted to a geographic information systems (GIS) format before 2007, as well. Longer-term enhancements are also planned to account for new snow data sources, mapping methodologies and user requirements. These modifications are being made with care to preserve the integrity of the long-standing satellite-derived snow record that is vital to global change detection. Published in 2007 by John Wiley & Sons, Ltd.
Abstract. This study presents the improvement in ice edge error within the US Navy's operational sea ice forecast systems gained by assimilating high horizontal resolution satellite-derived ice concentration products. Since the late 1980's, the ice forecast systems have assimilated near realtime sea ice concentration derived from the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSMI and then SSMIS). The resolution of the satellite-derived product was approximately the same as the previous operational ice forecast system (25 km). As the sea ice forecast model resolution increased over time, the need for higher horizontal resolution observational data grew. In 2013, a new Navy sea ice forecast system (Arctic Cap Nowcast/Forecast System -ACNFS) went into operations with a horizontal resolution of ∼ 3.5 km at the North Pole. A method of blending ice concentration observations from the Advanced Microwave Scanning Radiometer (AMSR2) along with a sea ice mask produced by the National Ice Center (NIC) has been developed, resulting in an ice concentration product with very high spatial resolution. In this study, ACNFS was initialized with this newly developed high resolution blended ice concentration product. The daily ice edge locations from model hindcast simulations were compared against independent observed ice edge locations. ACNFS initialized using the high resolution blended ice concentration data product decreased predicted ice edge location error compared to the operational system that only assimilated SSMIS data. A second evaluation assimilating the new blended sea ice concentration product into the pre-operational Navy Global Ocean Forecast System 3.1 also showed a substantial improvement in ice edge location over a system using the SSMIS sea ice concentration product alone. This paper describes the technique used to create the blended sea ice concentration product and the significant improvements in ice edge forecasting in both of the Navy's sea ice forecasting systems.
Abstract:The temporal and spatial continuity of spatially distributed estimates of snow-covered area (SCA) are limited by the availability of cloud-free satellite imagery; this also affects spatial estimates of snow water equivalent (SWE), as SCA can be used to define the extent of snow telemetry (SNOTEL) point SWE interpolation. In order to extend the continuity of these estimates in time and space to areas beneath the cloud cover, gridded temperature data were used to define the spatial domain of SWE interpolation in the Salt-Verde watershed of Arizona. Gridded positive accumulated degree-days (ADD) and binary SCA (derived from the Advanced Very High Resolution Radiometer (AVHRR)) were used to define a threshold ADD to define the area of snow cover. The optimized threshold ADD increased during snow accumulation periods, reaching a peak at maximum snow extent. The threshold then decreased dramatically during the first time period after peak snow extent owing to the low amount of energy required to melt the thin snow cover at lower elevations. The area having snow cover at this later time was then used to define the area for which SWE interpolation was done. The area simulated to have snow was compared with observed SCA from AVHRR to assess the simulated snow map accuracy. During periods without precipitation, the average commission and omission errors of the optimal technique were 7% and 11% respectively, with a map accuracy of 82%. Average map accuracy decreased to 75% during storm periods, with commission and omission errors equal to 11% and 12% respectively. The analysis shows that temperature data can be used to help estimate the snow extent beneath clouds and therefore improve the spatial and temporal continuity of SCA and SWE products.
Abstract:In this study, daily maps of snow cover distribution and sea ice extent produced by NOAA's interactive multisensor snow and ice mapping system (IMS) were validated using in situ snow depth data from observing stations obtained from NOAA's National Climatic Data Center (NCDC) for calendar years 2006 to 2010. IMS provides daily maps of snow and sea ice extent within the Northern Hemisphere using data from combination of geostationary and polar orbiting satellites in visible, infrared and microwave spectrums. Statistical correspondence between the IMS and in situ point measurements has been evaluated assuming that ground measurements are discrete and continuously distributed over a 4 km IMS snow cover maps. Advanced Very High Resolution Radiometer (AVHRR) land and snow classification data are supplemental datasets used in the further analysis of correspondence between the IMS product and in situ measurements. The comparison of IMS maps with in situ snow observations conducted over a period of four years has demonstrated a good correspondence of the data sets. The daily rate of agreement between the products mostly ranges between 80% and 90% during the Northern Hemisphere through the winter seasons when about a quarter to one third of the territory of OPEN ACCESS Remote Sens. 2012, 4 1135 continental US is covered with snow. Further, better agreement was observed for stations recording higher snow depth. The uncertainties in validation of IMS snow product with stationed NCDC data were discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.