Several puzzling observations in the scanning tunneling miucroscopy (STM) and atomic force microscopy (AFM) studies of highly oriented pyrolytic graphite (HOPG) and its intercalation compounds MCg (M = K, Rb, Cs) were investigated on the basis of atom-atom potential and Coulombic interaction energy calculations. The charge or spin density wave state of a graphite monolayer is found inconsistent with an identical peak registry of the HOPG STM images obtained at plus and minus bias voltages. Simultaneous STM/AFM measurements of HOPG show the STM and AFM images to have an identical peak registry, which implies that the local hardness of the surface monolayer is larger at the B-site than at the A-site. We confirm this implication by estimating the local hardness in the surface monolayer of a graphite bilayer in terms of atomatom potential calculations. The essential characteristics of the Moire STM images of HOPG are correctly predicted by the local hardness map obtained for the surface monolayer of a graphite bilayer in terms of atom-atom potential calculations. This supports the notion that the tip-force-induced topography change in the surface monolayer is generally responsible for Moire STM patterns in layered materials. It is most likely that the surface charge density wave (CDW) of MCg (M = K, Rb, Cs) observed by STM is associated with the P band electrons of the surface graphite monolayer and is not caused either by a Fermi surface nesting driven electronic instability or by a possible topography change induced by the tip force. We calculate the Coulombic interaction energy of the surface KCg blayer for several different negative charge (transferred from K) distributions in the graphite monolayer. This energy is increasingly lowered when the charge distribution becomes more nonuniform, thereby suggesting that the surface CDW of MCg (M = K, Rb, Cs) occurs most likely to lower the Coulombic interaction energy in the surface MCg bilayer.
Gel-drawn ultrahigh molecular weight polyethylene was studied by atomic force microscopy (AFM). Three-dimensional surface profiles were recorded for tapes drawn to different extents. AFM images allowed the discrimination of different well-defined levels of the fibrillar morphology: (i) bundles of microfibrils with a diameter between 4 and 7 rm strongly depending on the elongation; (ii) microfibrils with a diameter between 0.2 and 1.2 gm which also decreased with increasing draw ratio; (iii) nanofibrils which form the elementary fibrillar building blocks; and (iv) regular chain patterns on the molecular level which correspond to the crystalline packing of polyethylene chains at the surface of the nanofibrils. The nanofibrils were formed during the initial conversion of lamellae to fibrillar crystallites and did not change considerably in diameter up to draw ratios of X = 70.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.