A: We have developed a prototype hexagonal light concentrator for the Large-Sized Telescopes of the Cherenkov Telescope Array. To maximize the photodetection efficiency of the focal-plane camera pixels for atmospheric Cherenkov photons and to lower the energy threshold, a specular film with a very high reflectance of 92-99% has been developed to cover the inner surfaces of the light concentrators. The prototype has a relative anode sensitivity (which can be roughly regarded as collection efficiency) of about 95 to 105% at the most important angles of incidence. The design, simulation, production procedure, and performance measurements of the light-concentrator prototype are reported.
Reflective light concentrators with hexagonal entrance and exit apertures are frequently used at the focal plane of gamma-ray telescopes in order to reduce the size of the dead area caused by the geometries of the photodetectors, as well as to reduce the amount of stray light entering at large field angles. The focal plane of the large-sized telescopes (LSTs) of the Cherenkov Telescope Array (CTA) will also be covered by hexagonal light concentrators with an entrance diameter of 50 mm (side to side) to maximize the active area and the photon collection efficiency, enabling realization of a very low energy threshold of 20 GeV. We have developed a prototype of this LST light concentrator with an injection-molded plastic cone and a specular multilayer film. The shape of the plastic cone has been optimized with a cubic Bézier curve and a ray-tracing simulation. We have also developed a multilayer film with very high reflectance ( 95%) along wide wavelength and angle coverage. The current status of the prototyping of these light concentrators is reported here.
The Large Size Telescopes, LSTs, located at the center of the Cherenkov Telescope Array, CTA, will be sensitive for low energy gamma-rays. The camera on the LST focal plane is optimized to detect low energy events based on a high photon detection efficiency and high speed electronics. Also the trigger system is designed to detect low energy showers as much as possible. In addition, the camera is required to work stably without maintenance in a few tens of years. In this contribution we present the design of the camera for the first LST and the status of its development and production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.