The Airborne Cloud–Aerosol Transport System (ACATS) is a Doppler wind lidar system that has recently been developed for atmospheric science capabilities at the NASA Goddard Space Flight Center (GSFC). ACATS is also a high-spectral-resolution lidar (HSRL), uniquely capable of directly resolving backscatter and extinction properties of a particle from a high-altitude aircraft. Thus, ACATS simultaneously measures optical properties and motion of cloud and aerosol layers. ACATS has flown on the NASA ER-2 during test flights over California in June 2012 and science flights during the Wallops Airborne Vegetation Experiment (WAVE) in September 2012. This paper provides an overview of the ACATS method and instrument design, describes the ACATS HSRL retrieval algorithms for cloud and aerosol properties, and demonstrates the data products that will be derived from the ACATS data using initial results from the WAVE project. The HSRL retrieval algorithms developed for ACATS have direct application to future spaceborne missions, such as the Cloud–Aerosol Transport System (CATS) to be installed on the International Space Station (ISS). Furthermore, the direct extinction and particle wind velocity retrieved from the ACATS data can be used for science applications such as dust or smoke transport and convective outflow in anvil cirrus clouds.
A set of small and lightweight laser retro-reflector arrays (LRAs) was fabricated and tested for use on lunar landers under NASA's Commercial Lunar Payload Service program. Each array contains eight 1.27-cm-diameter corner cube retro-reflectors mounted on a dome-shaped aluminum structure. The arrays are 5.0 cm in diameter at the base, 1.6 cm in height, and 20 g in mass. They can be tracked by an orbiting laser altimeter, such as the Lunar Orbiter Laser Altimeter, from a distance of a few hundred kilometers or by a landing lidar on future lunar landers. The LRAs demonstrated a diffraction-limited optical performance. They were designed and tested to survive and function on the Moon for decades, well after the lander missions are completed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.