BackgroundMany studies have evaluated associations between asthma emergency department (ED) visits, hospital admissions (HAs), and ambient ozone (O3) across the US, but not in Texas. We investigated the relationship between O3 and asthma HAs, and the potential impacts of outdoor pollen, respiratory infection HAs, and the start of the school year in Texas.MethodsWe obtained daily time-series data on asthma HAs and ambient O3 concentrations for Dallas, Houston, and Austin, Texas for the years 2003–2011. Relative risks (RRs) and 95% confidence intervals (CIs) of asthma HAs per 10-ppb increase in 8-h maximum O3 concentrations were estimated from Poisson generalized additive models and adjusted for temporal trends, meteorological factors, pollen, respiratory infection HAs, day of the week, and public holidays. We conducted a number of sensitivity analyses to assess model specification.ResultsWe observed weak associations between total asthma HAs and O3 at lags of 1 day (RR10 ppb = 1.012, 95% CI: 1.004–1.021), 2 days (RR10 ppb = 1.011, 95% CI: 1.002–1.019), and 0–3 days (RR10 ppb = 1.017, 95% CI: 1.005–1.030). The associations were primarily observed in children aged 5–14 years (e.g., for O3 at lag 0–3 days, RR10 ppb = 1.037, 95% CI: 1.011–1.064), and null in individuals 15 years or older. The effect estimates did not change significantly with adjustment for pollen and respiratory infections, but they attenuated considerably and lost statistical significance when August and September data were excluded. A significant interaction between time around the start of the school year and O3 at lag 2 day was observed, with the associations with pediatric asthma HAs stronger in August and September (RR10 ppb = 1.040, 95% CI: 1.012–1.069) than in the rest of the year (October–July) (RR10 ppb = 1.006, 95% CI: 0.986–1.026).ConclusionsWe observed small but statistically significant positive associations between total and pediatric asthma HAs and short-term O3 exposure in Texas, especially in August and September. Further research is needed to determine how the start of school could modify the observed association between O3 and pediatric asthma HAs.Electronic supplementary materialThe online version of this article (doi:10.1186/s40733-017-0034-1) contains supplementary material, which is available to authorized users.
In October 2015, the United States Environmental Protection Agency (EPA) lowered the level of the ozone National Ambient Air Quality Standard (NAAQS) from 0.075 ppm to 0.070 ppm (annual 4th highest daily maximum 8-h concentration, averaged over three years). The EPA estimated a 2025 annual national non-California net benefit of $1.5 to $4.5 billion (2011$, 7% discount rate) for a 0.070 ppm standard, and a −$1.0 to $14 billion net benefit for an alternative 0.065 ppm standard. The purpose of this work is to present a combined toxicological and economic assessment of the EPA’s benefit-cost analysis of the 2015 ozone NAAQS. Assessing the quality of the epidemiology studies based on considerations of bias, confounding, chance, integration of evidence, and application of the studies for future population risk estimates, we derived several alternative benefits estimates. We also considered the strengths and weaknesses of the EPA’s cost estimates (e.g., marginal abatement costs), as well as estimates completed by other authors, and provided our own alternative cost estimate. Based on our alternative benefits and cost calculations, we estimated an alternative net benefit of between −$0.3 and $1.8 billion for a 0.070 ppm standard (2011 $, 7% discount rate) and between −$23 and −$17 billion for a 0.065 ppm standard. This work demonstrates that alternative reasonable assumptions can generate very difference cost and benefits estimates that may impact how policy makers view the outcomes of a major rule.
This paper highlights the pervasive misconception concerning 1994 findings from Hatch et al. about ozone (O) tissue dose in humans versus rats. That study exposed humans to 0.4 ppm and rats to 2 ppm O-labeled O and found comparable incorporation of O into bronchoalveolar lavage constituents. However, during O exposure humans were exercising, which increased their ventilation rate five-fold, while rats were at rest. This resulted in similar O tissue doses between the two species, and predominantly explained the comparable O incorporation at five-fold different concentrations. The five-times higher exercising human inhalation rate offset the five-times lower concentration, producing the same human dose expected at rest at 2 ppm (i.e. 0.4 ppm × 4686 L/2 hour ≈ 2 ppm × 998 L/2 hour). In 2013, Hatch et al. showed that resting humans and resting rats experienced fairly comparableO incorporation at the same O exposure concentration and activity state into BALF cells. Despite these findings, we show here that in the peer-reviewed literature a substantial proportion of researchers continue to perpetuate the misunderstanding that human lung tissue doses of O are simply 3-5 times greater than rat doses at the same O concentration, due to interspecies differences, and not considering activity state. It is important to correct this misconception to ensure an appropriate understanding of the implications of O studies by the scientific community and policy experts making regulatory decisions (e.g. the US Environmental Protection Agency's National Ambient Air Quality Standards for O).
In 2015, the United States Environmental Protection Agency (US EPA) set the ozone National Ambient Air Quality Standards (NAAQS) at 0.070 parts per million (ppm), for an annual 4th highest daily 8-hour (h) maximum average concentration, averaged over three years, with compliance based on the monitor with the highest concentrations. Numerous epidemiological studies have evaluated associations between ozone and health effects, but how the ozone concentrations derived from those studies can be compared to the ozone NAAQS is not clear, because of the complexity of the standard. The purpose of the present work was to determine how ozone summary metrics used in key epidemiology studies compare to the metrics that comprise the ozone regulatory value. Evaluation of epidemiology studies used for quantitative risk assessment in the 2015 ozone NAAQS review demonstrated that the most commonly used summary metrics that differed from the NAAQS were: 1-h maximum or 24-h average concentrations; multiple-day averages from 2 to 30 days; and averaging of ozone concentrations across all monitors in an area and over different months of the year. Using different ozone summary metrics to calculate the ozone regulatory value in twelve US cities for 2000-2002 or 2013-2015 generated alternative ozone regulatory values that were often substantively different and that may or may not vary commensurate with the regulatory standard. Comparison of epidemiology study metrics to other countries' ozone standards or guideline levels produces similar challenges as described here for the NAAQS. In conclusion, many of the ozone concentration metrics used in epidemiology studies cannot be directly compared to the ozone NAAQS, and using simple conversion ratios adds substantial uncertainty to concentration estimates. These summary metrics must be reconciled to the regulatory value before any judgements are made as to the protectiveness of current and alternative standards based on epidemiology study results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.