Motion artifacts are a significant source of noise in many functional near-infrared spectroscopy (fNIRS) experiments. Despite this, there is no well-established method for their removal. Instead, functional trials of fNIRS data containing a motion artifact are often rejected completely. However, in most experimental circumstances the number of trials is limited, and multiple motion artifacts are common, particularly in challenging populations. Many methods have been proposed recently to correct for motion artifacts, including principle component analysis, spline interpolation, Kalman filtering, wavelet filtering and correlation-based signal improvement. The performance of different techniques has been often compared in simulations, but only rarely has it been assessed on real functional data. Here, we compare the performance of these motion correction techniques on real functional data acquired during a cognitive task, which required the participant to speak aloud, leading to a low-frequency, low-amplitude motion artifact that is correlated with the hemodynamic response. To compare the efficacy of these methods, objective metrics related to the physiology of the hemodynamic response have been derived. Our results show that it is always better to correct for motion artifacts than reject trials, and that wavelet filtering is the most effective approach to correcting this type of artifact, reducing the area under the curve where the artifact is present in 93% of the cases. Our results therefore support previous studies that have shown wavelet filtering to be the most promising and powerful technique for the correction of motion artifacts in fNIRS data. The analyses performed here can serve as a guide for others to objectively test the impact of different motion correction algorithms and therefore select the most appropriate for the analysis of their own fNIRS experiment.
In recent years, it has been demonstrated that using functional near-infrared spectroscopy (fNIRS) channels with short separations to explicitly sample extra-cerebral tissues can provide a significant improvement in the accuracy and reliability of fNIRS measurements. The aim of these short-separation channels is to measure the same superficial hemodynamics observed by standard fNIRS channels while also being insensitive to the brain. We use Monte Carlo simulations of photon transport in anatomically informed multilayer models to determine the optimum source-detector distance for short-separation channels in adult and newborn populations. We present a look-up plot that provides (for an acceptable value of short-separation channel brain sensitivity relative to standard channel brain sensitivity) the optimum short-separation distance. Though values vary across the scalp, when the acceptable ratio of the short-separation channel brain sensitivity to standard channel brain sensitivity is set at 5%, the optimum short-separation distance is 8.4 mm in the typical adult and 2.15 mm in the term-age infant.
Seizures in the newborn brain represent a major challenge to neonatal medicine. Neonatal seizures are poorly classified, under-diagnosed, difficult to treat and are associated with poor neurodevelopmental outcome. Video-EEG is the current gold-standard approach for seizure detection and monitoring. Interpreting neonatal EEG requires expertise and the impact of seizures on the developing brain remains poorly understood. In this case study we present the first ever images of the haemodynamic impact of seizures on the human infant brain, obtained using simultaneous diffuse optical tomography (DOT) and video-EEG with whole-scalp coverage. Seven discrete periods of ictal electrographic activity were observed during a 60 minute recording of an infant with hypoxic–ischaemic encephalopathy. The resulting DOT images show a remarkably consistent, high-amplitude, biphasic pattern of changes in cortical blood volume and oxygenation in response to each electrographic event. While there is spatial variation across the cortex, the dominant haemodynamic response to seizure activity consists of an initial increase in cortical blood volume prior to a large and extended decrease typically lasting several minutes. This case study demonstrates the wealth of physiologically and clinically relevant information that DOT–EEG techniques can yield. The consistency and scale of the haemodynamic responses observed here also suggest that DOT–EEG has the potential to provide improved detection of neonatal seizures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.