Despite wide recognition that a moving object is perceived to last longer, scientists do not yet agree as to how this illusion occurs. In the present study, we conducted two experiments using two experimental methods, namely duration matching and reproduction, and systematically manipulated the temporal frequency, spatial frequency, and speed of the stimulus, to identify the determinant factor of the illusion. Our results indicated that the speed of the stimulus, rather than temporal frequency or spatial frequency per se, best described the perceived duration of a moving stimulus, with the apparent duration proportionally increasing with log speed (Experiments 1 and 2). However, in an additional experiment, we found little or no change in onset and offset reaction times for moving stimuli (Experiment 3). Arguing that speed information is made explicit in higher stages of visual information processing in the brain, we suggest that this illusion is primarily mediated by higher level motion processing stages in the dorsal pathway.
Simultaneous brightness contrast and simultaneous color contrast are classical illusions that demonstrate how our perception can be altered by spatial context; a central gray region appears to have brightness and color that are complementary to those of a surrounding region. Previous studies have suggested the involvement of a sluggish process in these illusions. On the other hand, a different, fast mechanism has recently been postulated to operate in simultaneous contrast when the stimulus is presented only briefly. Here, we show that in briefly flashed stimuli, not only the simultaneous brightness contrast but also the simultaneous color contrast is perceived with greatly enhanced illusion strength. In simultaneous brightness contrast, inserting a spatial gap between the center and surround weakened the illusion only when the stimulus was flashed. In simultaneous color contrast, the gap weakened the illusion irrespective of stimulus duration. Both brightness contrast and color contrast effects steeply decayed with duration. The present study suggests the existence of a fast-responding process for estimating brightness/color primarily based on local difference in luminance/color along the edge between the center and surround. We argue that the sluggishness of simultaneous contrast demonstrated by previous studies originated from a sluggish process after local and fast spatial interactions.
Independent channels respond to both the spatial and temporal characteristics of visual stimuli. Gratings <3 cycles per degree (cpd) are sensed by transient channels that prefer intermittent stimulation, while gratings >3 cpd are sensed by sustained channels that prefer steady stimulation. From this we predict that adaptation to a spatially uniform flickering field will selectively adapt the transient channels and raise the apparent spatial frequency of coarse sinusoidal gratings. Observers adapted to a spatially uniform field whose upper or lower half was steady and whose other half was flickering. They then adjusted the spatial frequency of a stationary test (matching) grating on the previously unmodulated half field until it matched the apparent spatial frequency of a grating falling on the previously flickering half field. The adapting field flickered at 8 Hz and the spatial frequency of the gratings was varied in octave steps from 0.25 to 16 cpd. As predicted, adapting to flicker raised the apparent spatial frequency of the test gratings. The aftereffect reached a peak of 11% between 0.5 and 1 cpd and disappeared above 4 cpd. We also observed that superimposed 10 Hz luminance flicker raised the apparent spatial frequency of 0.5 cpd test gratings. The effect was not seen with slower flicker or finer test gratings. Altogether, our study suggests that apparent spatial frequency is determined by the balance between transient and sustained channels and that an imbalance between the channels caused by flicker can alter spatial frequency perception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.