Our aim was to establish the phylogenetic and genetic relationships among avian influenza viruses (AIV) recently isolated from poultry in Israel. During this study we analyzed complete nucleotide sequences of two envelope (hemagglutinin and neuraminidase) and six internal genes (polymerase B1, polymerase B2, polymerase A, nucleoprotein, nonstructural, and matrix) of 29 selected H9N2 and six internal genes of five H5N1 viruses isolated in Israel during 2000-2006. Comparative genetic and phylogenetic analyses of these sequences revealed that the local H5N1 viruses are closely related to H5N1 viruses isolated in European, Asian, and Middle Eastern countries in 2005-2006. The H9N2 Israeli isolates, together with viruses isolated in Jordan and Saudi Arabia formed a single group. Our data support the claim that during recent years a new endemic focus of H9N2 has been formed in the Middle East. The introduction of H5N1 and co-circulation of these two subtypes of AIV in this region may augment the risk of potentially pandemic strains emergence.
The H9N2 avian influenza virus (AIV) subtype has become endemic in Israel since its introduction in 2000. The disease has been economically damaging to the commercial poultry industry, in part because of the synergistic pathology of coinfection with other viral and/or bacterial pathogens. Avian influenza virus viability in the environment depends on the cumulative effects of chemical and physical factors, such as humidity, temperature, pH, salinity, and organic compounds, as well as differences in the virus itself. We sought to analyze the viability of AIV H9N2 strains at three temperatures (37, 20, and 4 C) and at 2 pHs (5.0 and 7.0). Our findings indicated that at 37 C AIV H9N2 isolate 1525 (subgroup IV) survived for a period of time 18 times shorter at 20 C, and 70 times shorter period at 4 C, as measured by a decrease in titer. In addition, the virus was sensitive to a lower pH (pH 5.0) with no detectable virus after 1 wk incubation at 20 C as compared to virus at pH 7.0, which was viable for at least 3 wk at that temperature. The temperature sensitivity of the virus corresponds to the occurrence of H9N2 outbreaks during the winter, and lower pH can greatly affect the viability of the virus.
Highly pathogenic H5N1 avian influenza A viruses (AIV) have caused outbreaks among domestic poultry and wild aquatic birds in many Asian, European, and African countries since 1997. In March 2006 an avian H5N1 influenza A virus was isolated from poultry in Israel. In the present study we molecularly characterized the hemagglutinin (HA) and neuraminidase (NA) genes of eleven H5N1 viruses isolated from domestic poultry in Israel and Gaza in March-April 2006. Phylogenetic analysis of the HA and NA genes showed that the Israeli and Gazian viruses were closely related to viruses isolated in Egypt in 2006.
The main aims of the present study were to characterize NS1 protein from H9N2 avian influenza viruses (AIVs) isolated in Israel and to investigate the possibility to use NS1-based indirect ELISA. To achieve these purposes, the non-structural gene (NS1) of 79 AIVs of the H9N2 subtype isolated in Israel in 2000-2009 was sequenced and genetically analyzed. The phylogenetic analysis demonstrated that four distinct introductions of H9N2 occurred in Israel during this period. Analysis of the inferred amino acid sequences of the NS1 proteins showed high, about 10%, differences between viruses of the 3rd and 4th introductions. Antibodies against NS1 protein in immune sera were tested by means of indirect ELISA using recombinant NS1 as antigen. Immune sera were obtained from experimentally H9N2-infected chicken after infection on 4, 7, 10, 14, and 21 days. All sera from chickens experimentally infected with 3rd- or 4th-introduction AIV contained anti-NS1 antibodies that were detected by enzyme-linked immunosorbent assay (NS1-ELISA) even though the recombinant NS1 used as antigen for NS1-ELISA differed significantly in its amino acid sequences from the NS1 protein of AIV that caused infection in experimental birds. These findings indicate that the sites of the NS1 protein by which viruses belonging to 3rd and 4th introduction are out of antigenic epitope positions were responsible for the results of NS1-based iELISA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.