Despite all other technologies reported in literature, electrospinning has gained significant importance because of its ability to fabricate nanostructures with distinctive properties, including high surface area and porosity. Electrospinning has been evolved as the most widely used technique in the recent century. It has been employed in various biomedical applications such as tissue-engineered vascular grafts. This can develop fibrous scaffolds that mimic the structure of extracellular matrix of native blood vessels, suitable for the promotion of cell adhesion, proliferation, and cell growth. There is a growing demand for tissue-engineered vascular grafts for the replacement of damaged or defected blood vessels in cardiovascular diseases. The purpose of this review is to summarize recent developments related to electrospun vascular grafts with different synthetic and natural polymers and electrospinning parameters that affect the final properties of vascular grafts. The main focus of this review is also to describe the previously used materials for electrospun vascular grafts and their applications with respect to small and large diameter vascular grafts.
The practice of using a massive amount of environmental unfriendly and toxic petroleum-based materials in tissue engineering and biomedical fields demands the materials, which are biodegradable, renewable, environmentally friendly, biocompatible, and bioactive. So, renewable polymers have got considerable attention due to their numerous desirable properties. The nanofibers that are prepared from renewable materials and their blends can integrate the properties of both nanofibers and renewable polymers. Development of scaffolds that mimic the construction of tissues at nanoscale is a great challenge for tissue engineering. Electrospinning is the most promising technique for nanofibers formation. Nanofibers provide a platform for cell adhesion, proliferation, and differentiation. Therefore, nanofibers from sustainable materials have been used in tissue engineering and biomedical fields. In this review, methods for nanofibers fabrication, sustainable nanofibers made from natural and synthetic polymers and their applications in tissue engineering and biomedical field, have been emphasized.
Small-diameter vascular grafts fabricated from synthetic polymers have found limited applications so far in vascular surgeries, owing to their poor mechanical properties. In this study, cylindrical nanofibrous structures of highly oriented nanofibers made from polyacrylonitrile, poly (lactide-co-glycolide) (PLGA), polycaprolactone (PCL) and poly(vinyl acetate) (PVAc) were investigated. Cylindrical collectors with alternate conductive and non-conductive segments were used to obtain highly oriented nanofibrous structures at the same time with better mechanical properties. The surface morphology (orientation), mechanical properties and suture retention of the nanofibrous structures were characterized using SEM, mechanical tester and universal testing machine, respectively. The PLGA nanofibrous cylindrical structure exhibited excellent properties (tensile strength of 9.1 ± 0.6 MPa, suture retention strength of 27N and burst pressure of 350 ± 50 mmHg) when compared to other polymers. Moreover, the PLGA grafts showed good porosity and elongation values, that could be potentially used for vascular graft applications. The combination of PLGA nanofibers with extracellular vesicles (EVs) will be explored as a potential vascular graft in future.
Research on synthesis, characterization, and understanding of novel properties of nanomaterials has led researchers to exploit their potential applications. When compared to other nanotechnologies described in the literature, electrospinning has received significant interest due to its ability to synthesize novel nanostructures (such as nanofibers, nanorods, nanotubes, etc.) with distinctive properties such as high surface-to-volume ratio, porosity, various morphologies such as fibers, tubes, ribbons, mesoporous and coated structures, and so on. Various materials such as polymers, ceramics, and composites have been fabricated using the electrospinning technique. Among them, polymers, especially block copolymers, are one of the useful and niche systems studied recently owing to their unique and fascinating properties in both solution and solid state due to thermodynamic incompatibility of the blocks, that results in microphase separation. Morphology and mechanical properties of electrospun block copolymers are intensely influenced by quantity and length of soft and hard segments. They are one of the best studied systems to fit numerous applications due to a broad variety of properties they display upon varying the composition ratio and molecular weight of blocks. In this review, the synthesis, fundamentals, electrospinning, and tissue engineering application of block copolymers are highlighted.
Background: Nanotechnology is a tool being used intensely in the area of drug delivery systems in the biomedical field. Electrospraying is one of the nanotechnological methods, which is growing due to its importance in the development of nanoparticles comprising bioactive compounds. It is helpful in improving the efficacy, reducing side effects of active drug elements, and is useful in targeted drug delivery. When compared to other conventional methods like nanoprecipitation, emulsion diffusion, and double emulsification, electrospraying offers better advantages to produce micro/nanoparticles due to its simplicity, cost-effectiveness, and single-step process. Objective: The aim of this paper is to highlight the use of electrosprayed nanoparticles for biomedical applications. Methods: We conducted a literature review on the usage of natural and synthetic materials to produce nanoparticles, which can be used as a drug delivery system for medical purposes. Results: We summarized a possible key role of electrosprayed nanoparticles in different therapeutic applications (tissue regeneration, cancer). Conclusion: The modest literature production denotes that further investigation is needed to assess and validate the promising role of drug-loaded nanoparticles through the electrospraying process as noninvasive materials in the biomedical field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.