Pyrazinamide (PZA) is a first-line drug for short-course tuberculosis therapy. Resistance to PZA is usually accompanied by loss of pyrazinamidase (PZase) activity in Mycobacterium tuberculosis. PZase converts PZA to bactericidal pyrazinoic acid, and the loss of PZase activity is associated with PZA resistance. The gene (pncA) encoding the M. tuberculosis PZase has recently been sequenced, and mutations in pncA were previously found in a small number of PZA-resistant M. tuberculosis strains. To further understand the genetic basis of PZA resistance and determine the frequency of PZA-resistant strains having pncA mutations, we analyzed a panel of PZA-resistant clinical isolates and mutants made in vitro. Thirty-three of 38 PZA-resistant clinical isolates had pncA mutations. Among the five strains that did not contain pncA mutations, four were found to be falsely resistant and one was found to be borderline resistant to PZA. The 33 PZA-resistant clinical isolates and 8 mutants made in vitro contained various mutations, including nucleotide substitutions, insertions, or deletions in the pncA gene. The identified mutations were dispersed along the pncA gene, but some degree of clustering of mutations was found at the following regions: Gly132-Thr142, Pro69-Leu85, and Ile5-Asp12. PCR-single-strand conformation polymorphism (SSCP) analysis was shown to be useful for the rapid detection of pncA mutations in the PZA-resistant strains. We conclude that a mutation in the pncA gene is a major mechanism of PZA resistance and that direct sequencing by PCR or SSCP analysis should help to rapidly identify PZA-resistant M. tuberculosis strains.
The BACTEC MGIT 960 system, a fully automated, nonradiometric, noninvasive system for detection and drug susceptibility testing of mycobacteria, was evaluated for the ability to test susceptibilities to second-line drugs. In this study, which was carried out in three phases (phase I, mostly susceptible strains; phase II, mostly resistant strains; phase III, final testing of the optimal drug concentrations found in phases I and II), we established the critical concentrations for seven drugs to be tested in the BACTEC MGIT 960 system compared to the BACTEC 460TB system. The critical concentrations for the seven drugs used in the MGIT 960 system are as follows: amikacin, 1.0 g/ml; capreomycin, 2.5 g/ml; ethionamide, 5.0 g/ml; protionamide, 2.5 g/ml; ofloxacin, 2.0 g/ml; rifabutin, 0.5 g/ml; linezolid, 1.0 g/ml. Our results demonstrate that the BACTEC MGIT 960 system is an accurate method for rapid testing of the susceptibilities of Mycobacterium tuberculosis to second-line drugs.Drug susceptibility testing (DST) for both primary and secondary antituberculosis drugs with the broth-based radiometric BACTEC 460 TB system (Becton Dickinson Diagnostic Systems, Sparks, MD) is well established and is considered the "gold standard" (15). However, due to increasing concern about the use and disposal of radioactive material, there is a rapid trend toward using commercially available nonradiometric broth-based culture and susceptibility testing methods. BACTEC MGIT 960 (Becton Dickinson Diagnostic Systems) is a new nonradiometric system which is considered equivalent to the BACTEC 460 in performance. Recovery of mycobacteria from clinical specimens as well as DST for first-line drugs has been thoroughly studied for the MGIT 960 system (3,4,5,7,8,10,11,12). However, no thorough multicenter study has been carried out establishing DST for second-line and newer drugs currently being used in the treatment of tuberculosis. According to the WHO reports, global drug resistance is an increasing concern (18). Some countries are reporting high resistance even against second-line drugs (1, 17). Therefore, it is important that nonradiometric broth-based systems should also offer DST procedures for drugs other than those considered first-line.The primary aim of this multicenter study was to develop a basic protocol, establish critical test concentrations for seven second-line and newer drugs, including a few that have been introduced recently, and then test a large number of clinical isolates. For comparison, BACTEC 460 was used as the gold standard, since critical test concentrations of most of the drugs have already been established for this system (9). It is anticipated that this study will provide a guideline for rapid brothbased susceptibility testing not only of the drugs that have been included here but also of other drugs that are used in the treatment of tuberculosis or will be introduced in the near future. MATERIALS AND METHODSStudy sites. This study was carried out at three sites: (i) the National Reference Center for Mycobacte...
A total of 463 respiratory specimens, all smear positive for acid-fast bacteria, were inoculated onto routine solid media and into BACTEC 7H12 Middlebrook medium for detection of mycobacterial growth. Conventional drug susceptibility testing (1% proportion method) was performed on Middlebrook 7H10/7H11 medium, and radiometric susceptibility testing was performed on BACTEC 7H12 medium. The average detection times for BACTEC-positive cultures were 8.3 days for Mycobacterium tuberculosis and 5.2 days for mycobacteria other than tuberculosis; by conventional methods, they were 19.4 and 17.8 days, respectively. These detection times do not include time required for identification, which was done by the conventional method only. There was an excellent correlation in the recovery rates of mycobacteria by the two methods. Drug susceptibility test results of M. tuberculosis isolates by the two methods showed 95.1 to 100% overall agreement. The average reporting time for drug susceptibility results ranged from 4.2 to 6.9 days for the BACTEC method and 13.7 to 21 days for the conventional methods. An average of 18 days was required by the BACTEC method for complete recovery and drug susceptibility testing of M. tuberculosis, as compared with 38.5 days for the conventional methods.
Conventional indirect drug susceptibility testing of Mycobacterium tuberculosis with liquid medium is well established and offers time-saving and reliable results. This multicenter study was carried out to evaluate if drug susceptibility testing (DST) can be successfully carried out directly from processed smear-positive specimens (direct DST) and if this approach could offer substantial time savings. Sputum specimens were digested, decontaminated, and concentrated by the laboratory routine procedure and were inoculated in Bactec MGIT 960 as well as Lowenstein-Jensen (LJ) medium for primary isolation. All the processed specimens which were acid-fast bacterium (AFB) smear positive were used for setting up direct DST for isoniazid (INH) and rifampin (RIF). After the antimicrobial mixture of polymyxin B, amphotericin B, nalidixic acid, trimethoprim, and azlocillin (PANTA) was added, the tubes were entered in the MGIT 960 instrument using the 21-day protocol (Bactec 960 pyrazinamide [PZA] protocol). Results obtained by direct DST were compared with those obtained by indirect DST to establish accuracy and time savings by this approach. Of a total of 360 AFB smear-positive sputum specimens set up for direct DST at four sites in three different countries, 307 (85%) specimens yielded reportable results. Average reporting time for direct DST was 11 days (range, 10 to 12 days). The average time savings by direct DST compared to indirect DST, which included time to isolate a culture and perform DST, was 8 days (range, 6 to 9 days). When results of direct DST were compared with those of indirect DST, there was 95.1% concordance with INH and 96.1% with rifampin. These findings indicate that direct DST with the Bactec MGIT 960 system offers further time savings and is a quick method to reliably detect multidrug resistance (MDR) cases.
Although Mycobacterium tuberculosis is eradicated rapidly during therapy in some patients with pulmonary tuberculosis, it can persist for many months in others. This study examined the relationship between mycobacterial drug tolerance (delayed killing in vitro), persistence, and relapse. It was performed with 39 fully drug-susceptible isolates from a prospective trial of standard short-course antituberculous therapy with sputum smear-positive, human immunodeficiency virus-uninfected subjects with pulmonary tuberculosis in Brazil and Uganda. The rate of killing in vitro was determined by monitoring the growth index (GI) in BACTEC 12B medium after addition of drug to established cultures and was measured as the number of days required for 99% sterilization. Drugs differed significantly in bactericidal activity, in the following order from greatest to least, rifampin > isoniazid-ethambutol > ethambutol (P < 0.001). Isolates from subjects who had relapses (n = 2) or in whom persistence was prolonged (n = 1) were significantly more tolerant of isoniazid-ethambutol and rifampin than isolates from other subjects (P < 0.01). More generally, the duration of persistence during therapy was predicted by strain tolerance to isoniazid and rifampin (P = 0.012 and 0.026, respectively). Tolerance to isoniazid-ethambutol and tolerance to rifampin were highly correlated (P < 0.001). Tolerant isolates did not differ from others with respect to the MIC of isoniazid; the rate of killing of a tolerant isolate by isoniazid-ethambutol was not increased at higher drug concentrations. These observations suggest that tolerance may not be due to drug-specific mechanisms. Tolerance was of the phenotypic type, although increased tolerance appeared to emerge after prolonged drug exposure in vivo. This study suggests that drug tolerance may be an important determinant of the outcome of therapy for tuberculosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.