Curcuma longa is very well-known medicinal plant not only in the Asian hemisphere but also known across the globe for its therapeutic and medicinal benefits. The active moiety of Curcuma longa is curcumin and has gained importance in various treatments of various disorders such as antibacterial, antiprotozoal, cancer, obesity, diabetics and wound healing applications. Several techniques had been exploited as reported by researchers for increasing the therapeutic potential and its pharmacological activity. Here, the dictum is the new room for the development of physicochemical, as well as biological, studies for the efficacy in target specificity. Here, we discussed nanoformulation techniques, which lend support to upgrade the characters to the curcumin such as enhancing bioavailability, increasing solubility, modifying metabolisms, and target specificity, prolonged circulation, enhanced permeation. Our manuscript tried to seek the attention of the researcher by framing some solutions of some existing troubleshoots of this bioactive component for enhanced applications and making the formulations feasible at an industrial production scale. This manuscript focuses on recent inventions as well, which can further be implemented at the community level.
: Cancer notably carcinoma represents a prominent health challenge worldwide. A variety of chemotherapeutic agents are being used to deal with a variety of carcinomas. However, these delivering agents not only enter the targeted site but also affect normal tissues yielding poor therapeutic outcomes. Chemotherapeutic-associated problems are been attributed to drug non-specificity resulting from poor drug delivery systems. These problems are now been solved using nanomedicine which entails using nanoparticles as drug delivery systems or nanocarriers. This nanoparticle-based drug delivery system enhances clinical outcomes by enabling targeted delivery, improving drug internalization, enhanced permeability, easy biodistribution, prolonged circulation and enhanced permeability rate thereby improving therapeutic effectiveness of several anticancer agents. Natural protein-based nanoparticles (PNPs) such as ferritin, lipoprotein, and lectins from natural sources have gained extensive importance at scientific community level as nanovehicle for effective drug delivery and photo acoustic labeling replacing several synthetic nanocarriers that have shown limited therapeutic outcomes. The bioavailability of PNP, chance of genetic engineering techniques to modify their biological properties made them one of the important raw material sources for drug delivery research. This current review highlighted different chemotherapeutic agents used in the treatment of some carcinomas. It also focused on the wide variety of natural protein sources derived nanoparticles (NPs) as anticancer delivery of agents for cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.