Motivation -To curate and organize expensive spaceflight experiments conducted aboard space stations and maximize the scientific return of investment, while democratizing access to vast amounts of spaceflight related omics data generated from several model organisms. Results -The GeneLab Data System (GLDS) is an open access database containing fully coordinated and curated "omics" (genomics, transcriptomics, proteomics, metabolomics) data, detailed metadata and radiation dosimetry for a variety of model organisms. GLDS is supported by an integrated data system allowing federated search across several public bioinformatics repositories. Archived datasets can be queried using full-text search (e.g., keywords, Boolean and wildcards) and results can be sorted in multifactorial manner using assistive filters. GLDS also provides a collaborative platform built on GenomeSpace for sharing files and analyses with collaborators. It currently houses 172 datasets and supports standard guidelines for submission of datasets, MIAME (for microarray), ENCODE Consortium Guidelines (for RNA-seq) and MIAPE Guidelines (for proteomics).
The mission of NASA’s GeneLab database (https://genelab.nasa.gov/) is to collect, curate, and provide access to the genomic, transcriptomic, proteomic and metabolomic (so-called ‘omics’) data from biospecimens flown in space or exposed to simulated space stressors, maximizing their utilization. This large collection of data enables the exploration of molecular network responses to space environments using a systems biology approach. We review here the various components of the GeneLab platform, including the new data repository web interface, and the GeneLab Online Data Entry (GEODE) web portal, which will support the expansion of the database in the future to include companion non-omics assay data. We discuss our design for GEODE, particularly how it promotes investigators providing more accurate metadata, reducing the curation effort required of GeneLab staff. We also introduce here a new GeneLab Application Programming Interface (API) specifically designed to support tools for the visualization of processed omics data. We review the outreach efforts by GeneLab to utilize the spaceflight data in the repository to generate novel discoveries and develop new hypotheses, including spearheading data analysis working groups, and a high school student training program. All these efforts are aimed ultimately at supporting precision risk management for human space exploration.
Space agencies have announced plans for human missions to the Moon to prepare for Mars. However, the space environment presents stressors that include radiation, microgravity, and isolation. Understanding how these factors affect biology is crucial for safe and effective crewed space exploration. There is a need to develop countermeasures, to adapt plants and microbes for nutrient sources and bioregenerative life support, and to limit pathogen infection. Scientists across the world are conducting space omics experiments on model organisms and, more recently, on humans. Optimal extraction of actionable scientific discoveries from these precious datasets will only occur at the collective level with improved standardization. To address this shortcoming, we established ISSOP (International Standards for Space Omics Processing), an international consortium of THE BIGGER PICTURE With the rise of commercial spaceflight and prospective human missions to Mars, a wider health range of humans will enter space for longer spans and at higher exposure to environmental stressors than ever before. Numerous adverse health effects have been observed in space, including bone demineralization and skeletal muscle atrophy, among others. Scientists across the world are conducting space omics studies to develop countermeasures for safe and effective crewed space missions. However, optimal extraction of scientific insight from such data is contingent on improved standardization. In response, we founded ISSOP (International Standards for Space Omics Processing), an international consortium of scientists who aim to enhance guidelines between space biologists globally. This paper informs scientists and data scientists from many fields about the challenges and future avenues of space omics and can serve as an introductory reference for new members in the space biology discipline. Concept: Basic principles of a new data science output observed and reported ll
Accurate assessment of risks of long-term space missions is critical for human space exploration. It is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from galactic cosmic rays (GCR) is a major health risk factor for astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently, there are gaps in our knowledge of the health risks associated with chronic low-dose, low-dose-rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The NASA GeneLab project ( https://genelab.nasa.gov/ ) aims to provide a detailed library of omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information on radiation exposure for ground-based studies, GeneLab is adding detailed, curated dosimetry information for spaceflight experiments. GeneLab is the first comprehensive omics database for space-related research from which an investigator can generate hypotheses to direct future experiments, utilizing both ground and space biological radiation data. The GLDS is continually expanding as omics-related data are generated by the space life sciences community. Here we provide a brief summary of the space radiation-related data available at GeneLab.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.