Amino acid ionic liquids are a special class of ionic liquids due to their unique acid-base behavior, biological significance, and applications in different fields such as templates in synthetic chemistry, stabilizers for biological macromolecules, etc. The physicochemical properties of these ionic liquids can easily be altered by making the different combinations of amino acids as anion along with possible cation modification which makes amino acid ionic liquids more suitable to understand the different kinds of molecular and ionic interactions with sufficient depth so that they can provide fruitful information for a molecular level understanding of more complicated biological processes. In this context, volumetric and osmotic coefficient measurements for aqueous solutions containing 1-ethyl-3-methylimidazolium ([Emim]) based amino acid ionic liquids of glycine, alanine, valine, leucine, and isoleucine are reported at 298.15 K. From experimental osmotic coefficient data, mean molal activity coefficients of ionic liquids were estimated and analyzed using the Debye-Hückel and Pitzer models. The hydration numbers of ionic liquids in aqueous solutions were obtained using activity data. Pitzer ion interaction parameters are estimated and compared with other electrolytes reported in the literature. The nonelectrolyte contribution to the aqueous solutions containing ionic liquids was studied by calculating the osmotic second virial coefficient through an application of the McMillan-Mayer theory of solution. It has been found that the second osmotic virial coefficient which includes volume effects correlates linearly with the Pitzer ion interaction parameter estimated independently from osmotic data as well as the hydrophobicity of ionic liquids. The enthalpy-entropy compensation effect, explained using the Starikov-Nordén model of enthalpy-entropy compensation, and partial molar entropy analysis for aqueous [Emim][Gly] solutions are made by using experimental Gibb's free energy data and literature enthalpy data. This study highlights that the hydrophobic interaction persists even in the limit of infinite dilution where the hydration effects are usually dominant, implying importance of hydrophobic hydration. Analysis of the results further shows that the hydration of amino acid ionic liquids occurs through the cooperative H-bond formation with the kosmotropic effect in contrast to the usual inorganic salts or hydrophobic salts like tetraalkylammonium halides.
Many thin film-based devices with solid electrolytes have been studied for memristive applications. Herein, we report a simple and facile way to fabricate solution-based, low-cost, and discrete two-terminal memristive devices using the KMnO4 solution. The water and methanol were used as a solvent to prepare different concentrations of KMnO4 to carry out the optimization study. Furthermore, the effect of KMnO4 concentration with aqueous and methanol solvents was studied with the help of current-voltage, device charge, charge-flux, and cyclic endurance properties. Interestingly, all developed devices show the asymmetric time-domain charge and double valued charge-flux properties, suggesting that aqueous KMnO4 and methanol-KMnO4 based devices are non-ideal memristors or memristive devices. The statistical measures such as cumulative probability and coefficient of variation are reported for the memristive devices. The possible switching mechanism of the discrete memristive was tried to explain with the UV-visible spectrum and theoretical framework. The optimized device was further studied using the cyclic voltammogram, Bode plot, and Nyquist plot. An equivalent circuit was derived for the optimized discrete memristive device using electrochemical impendence spectroscopy results. The results of the present investigation are beneficial to develop programmable analog circuits, volatile memory, and synaptic devices using discrete memristive devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.