The memristive device is a fourth fundamental circuit element with inherent memory, nonlinearity, and passivity properties. Herein, we report on a cost-effective and rapidly produced ZnO thin film memristive device using the doctor blade method. The active layer of the developed device (ZnO) was composed of compact microrods. Furthermore, ZnO microrods were well spread horizontally and covered the entire surface of the fluorine-doped tin oxide substrate. X-ray diffraction (XRD) results confirmed that the synthesized ZnO was oriented along the c-axis and possessed a hexagonal crystal structure. The device showed bipolar resistive switching characteristics and required a very low resistive switching voltage (±0.8 V) for its operation. Two distinct and well-resolved resistance states with a remarkable 103 memory window were achieved at 0.2-V read voltage. The developed device switched successfully in consecutive 102 switching cycles and was stable over 102 seconds without any observable degradation in the resistive switching states. In addition to this, the charge–magnetic flux curve was observed to be a single-valued function at a higher magnitude of the flux and became double valued at a lower magnitude of the flux. The conduction mechanism of the ZnO thin film memristive device followed the space charge limited current, and resistive switching was due to the filamentary resistive switching effect.
Brain‐inspired computation is a promising field toward the next generation of intelligent computing systems. To mimic the brain functions, this field requires devices that can support the goal of computing efficiency, size, and cost. Therefore, researchers are trying to fabricate soft and flexible devices using synthetically organic and inorganic materials like solid‐state or ionic liquids. Herein, a soft and flexible bioinspired neuromorphic computing device based on organic silk fibroin gel, which is robust under external forces, is proposed. Silk fibroin protein is composed of essential and nonessential amino acids. with special amount of positively charged glycine, alanine, which plays an essential role during ionic movement to perform neuromorphic computing. Detailed electrical characterization of the proposed (Cu/silk fibroin gel/Cu) discrete device confirms the synaptic behavior by applying different pulse amplitudes, pulse widths, and frequencies. In addition, the proposed device delivers stable performance during mechanical deformations. The analysis of the present results defines that the proposed device is a potential candidate for environmentally friendly wearable intelligent electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.