This paper proposes RPPM which, based on a microarchitecture-independent profile of a multithreaded application, predicts its performance on a previously unseen multicore platform. RPPM breaks up multithreaded program execution into epochs based on synchronization primitives, and then predicts per-epoch active execution times for each thread and synchronization overhead to arrive at a prediction for overall application performance. RPPM predicts performance within 12% on average (27% max error) compared to cycle-level simulation. We present a case study to illustrate that RPPM can be used for making accurate multicore design trade-offs early in the design cycle.
Analytical performance modeling is a useful complement to detailed cycle-level simulation to quickly explore the design space in an early design stage. Mechanistic analytical modeling is particularly interesting as it provides deep insight and does not require expensive offline profiling as empirical modeling. Previous work in mechanistic analytical modeling, unfortunately, is limited to single-threaded applications running on single-core processors. This work proposes RPPM, a mechanistic analytical performance model for multi-threaded applications on multicore hardware. RPPM collects microarchitecture-independent characteristics of a multi-threaded workload to predict performance on a previously unseen multicore architecture. The profile needs to be collected only once to predict a range of processor architectures. We evaluate RPPM's accuracy against simulation and report a performance prediction error of 11.2% on average (23% max). We demonstrate RPPM's usefulness for conducting design space exploration experiments as well as for analyzing parallel application performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.