The aim of this study was to characterize the mechanism of the chemical interaction between L-ascorbic acid (ASC) and tetrahydrobiopterin (BH(4)) in vitro and to examine its effect on the activity of endothelial nitric oxide synthase (eNOS) in first trimester human placentae. At room temperature, in Tris-HCl buffer (pH 7.4), both ASC and BH(4) were readily oxidized by dissolved O(2) or H(2)O(2). BH(4) was more sensitive to auto-oxidation, while ASC was more susceptible to oxidation by H(2)O(2). Addition of 36 micromol/l BH(4) to 143 micromol/l ASC increased the initial rate of ASC oxidation 3.2-fold in a catalase-sensitive manner, indicating that enhanced ASC oxidation is partly due to the formation of H(2)O(2). In the presence of catalase, BH(4) still stimulated 1.9-fold the initial rate of ASC oxidation, suggesting that another auto-oxidation product of BH(4), most probably quininoid-BH(2) (qBH(2)), could also stimulate ASC oxidation while itself being reduced back to BH(4). ASC prevented the auto-oxidation of BH(4) in a concentration-dependent fashion, with 3 mmol/l ASC providing an almost complete stabilization of 25 micromol/l BH(4). Importantly, basal eNOS activity in placental microsomes was stimulated 2.5-fold by 0.5 micromol/l BH(4), and 0.5 mmol/l ASC enhanced the BH(4)-stimulation 1.4-fold, with a smaller effect on basal eNOS activity. Taken together, the findings support the notion that the stabilizing action of ASC on BH(4) is related to the ASC-mediated reductive reversal of the auto-oxidation process of BH(4). Moreover, we demonstrated that concentrations of ASC present in the placenta as a common vitamin C supply are sufficient to protect cellular free BH(4) and may contribute to the stimulation of placental eNOS activity.
From 1986 to the end of 1991, 19 patients with persisting post-traumatic unawareness were admitted for rehabilitation. Criteria for admission were head trauma, Glasgow coma scale score <8 points, and at least a one month duration of unawareness.Out of 19 patients, 12 patients (63%) regained consciousness, 11 patients (58%) within the first year and one patient (5%) within the second year. The mean duration of unawareness in the patients who recovered consciousness was 190 (range 62-440) days.In the recovery group, according to the Glasgow outcome scale, seven out of 12 patients (58%) were moderately disabled and five (42%) were severely disabled at the moment of discharge from rehabilitation. All the 12 patients who regained consciousness live with their families, and none had to be kept in an institution.The data confirm that awakening from post-traumatic unawareness is possible after a long period. Therefore, post-traumatic unawareness persisting for more than a month should not be considered an irreversible condition, because an outcome that might be regarded by some as being acceptable is possible even in patients with very severe brain damage. ( Neurol Neurosurg Psychiatry 1995;58:465-466)
BackgroundPravastatin, a known inducer of endothelial nitric-oxide synthase (eNOS) was demonstrated in human placenta, however the exact mechanism of it’s action is not fully understood. Since placental NO (nitric oxide) synthesis is of primary importance in the regulation of placental blood flow, we aimed to clarify the effects of pravastatin on healthy (n = 6) and preeclamptic (n = 6) placentas (Caucasian participants).MethodsThe eNOS activity of human placental microsomes was determined by the conversion rate of C14 L-arginine into C14 L-citrulline with or without pravastatin and Geldanamycin. Phosphorylation of eNOS (Ser1177) was investigated by Western blot. Microsomal arginine uptake was measured by a rapid filtration method.ResultsPravastatin significantly increased total eNOS activity in healthy (28%, p<0.05) and preeclamptic placentas (32%, p<0.05) using 1 mM Ca2+ promoting the dissociation of a eNOS from it’s inhibitor caveolin. Pravastatin and Geldanamycin (Hsp90 inhibitor) cotreatment increased microsomal eNOS activity. Pravastatin treatment had no significant effects on Ser1177 phosphorylation of eNOS in either healthy or preeclamptic placentas. Pravastatin induced arginine uptake of placental microsomes in both healthy (38%, p < 0.05) and preeclamptic pregnancies (34%, p < 0.05).ConclusionsThis study provides a novel mechanism of pravastatin action on placental NO metabolism. Pravastatin induces the placental microsomal arginine uptake leading to the rapid activation of eNOS independently of Ser1177 phosphorylation. These new findings may contribute to better understanding of preeclampsia and may also have a clinical relevance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.