Iridoviruses, especially megalocytiviruses, are related to severe disease resulting in high economic losses in the aquaculture industry worldwide. The ornamental fish industry has been affected severely due to Megalocytivirus infections. Megalocytivirus is a DNA virus that has three genera; including red sea bream iridovirus, infectious spleen and kidney necrosis virus, and turbot reddish body iridovirus. Megalocytivirus causes non-specific clinical signs in ornamental fish. Cell culture, histology, immunofluorescence test, polymerase chain reaction (PCR) assay, and loop-mediated isothermal amplification assay have been used to diagnose megalocytiviruses. Risk factors such as temperature, transportation (export and import), and life stages of ornamental fish have been reported for the previous cases due to Megalocytivirus infections. In addition, other prevention and control methods also have been practiced in farms to prevent Megalocytivirus outbreaks. This is the first review of megalocytiviruses in ornamental fish since its first detection in 1989. This review discusses the occurrences of Megalocytivirus in ornamental fish, including the history, clinical signs, detection method, risk factors, and prevention measures.
Background and Aim: Viral nervous necrosis (VNN) is a serious disease of several marine fish species. VNN causes 100% mortality in the larval stages, while lower losses have been reported in juvenile and adult fish. This study aimed to detect the occurrence of VNN while identifying its associated risk factors and the genotypes of its causative agent in a hybrid grouper hatchery in Malaysia. Materials and Methods: A batch of newly hatched hybrid grouper fry (Epinephelus fuscoguttatus X Epinephelus lanceolatus) were followed from the larval stage to market size. Samples of the hybrid groupers, water, live feed, and artificial fish pellets were collected periodically from day 0 to 180 in the hybrid grouper hatchery. Reverse transcription-polymerase chain reaction (RT-PCR) and nested PCR amplifications were carried out on VNN-related sequences. The phylogenetic tree including the sampled causative agent of VNN was inferred from the coat protein genes from all known Betanodavirus species using Molecular Evolutionary Genetics Analysis (MEGA). Pearson's correlation coefficient values were calculated to determine the strength of the correlation between the presence of VNN in hybrid grouper samples and its associated risk factors. Results: A total of 113 out of 146 pooled and individual samples, including hybrid grouper, water, and artificial fish pellet samples, demonstrated positive results in tests for the presence of VNN-associated viruses. The clinical signs of infection observed in the samples included darkened skin, deformation of the backbone, abdominal distension, skin lesions, and fin erosion. VNN was present throughout the life stages of the hybrid groupers, with the first detection occurring at day 10. VNN-associated risk factors included water temperature, dissolved oxygen content, salinity, ammonia level, fish size (adults more at risk than younger stages), and life stage (age). Detection of VNN-associated viruses in water samples demonstrated evidence of horizontal transmission of the disease. All the nucleotide sequences found in this study had high nucleotide identities of 88% to 100% to each other, striped jack nervous necrosis virus (SJNNV), and the reassortant strain red-spotted grouper NNV/SJNNV (RGNNV/SJNNV) isolate 430.2004 (GenBank accession number JN189932.1) (n=26). The phylogenetic analysis showed that quasispecies was present in each VNN-causing virus-positive sample, which differed based on the type of sample and life stage. Conclusion: This study was the first to confirm the existence of a reassortant strain (RGNNV/SJNNV) in hybrid groupers from Malaysia and Southeast Asia. However, the association between the mode of transmission and the risk factors of this virus needs to be investigated further to understand the evolution and potential new host species of the reassortant strain. Keywords: epidemiology, quasispecies, reassortant, red-spotted grouper nervous necrosis virus-striped jack nervous necrosis virus, viral nervous necrosis.
Coral reefs are among the most biodiverse biological systems on earth. Corals are classified as marine invertebrates and filter the surrounding food and other particles in seawater, including pathogens such as viruses. Viruses act as both pathogen and symbiont for metazoans. Marine viruses that are abundant in the ocean are mostly single-, double stranded DNA and single-, double stranded RNA viruses. These discoveries were made via advanced identification methods which have detected their presence in coral reef ecosystems including PCR analyses, metagenomic analyses, transcriptomic analyses and electron microscopy. This review discusses the discovery of viruses in the marine environment and their hosts, viral diversity in corals, presence of virus in corallivorous fish communities in reef ecosystems, detection methods, and occurrence of marine viral communities in marine sponges.
The use of swabs relative to organs as a sample collection method for the detection of Tasmanian salmon reovirus (TSRV) in farmed Tasmanian Atlantic salmon, Salmo salar L., was evaluated by RT-qPCR. Evaluation of individual and pooled sample collection (organs vs swabs) was carried out to determine the sensitivity of the collection methods and the effect of pooling of samples for the detection of TSRV. Detection of TSRV in individual samples was as sensitive when organs were sampled compared to swabs, and in pooled samples, organs demonstrated a sensitivity of one 10-fold dilution higher than sampling of pooled swabs. Storage of swabs at 4 °C for t = 24 h demonstrated results similar to those at t = 0. Advantages of using swabs as a preferred sample collection method for the detection of TSRV compared to organ samples are evident from these experimental trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.