Bleach was highly antimicrobial but incompatible with metal dental prosthesis components. IPA and mouthwash were antimicrobial but damaged PMMA. Specialist denture cleanser tablets gave a good combination of microbial efficacy and reasonable material compatibility.
Objective Oral care formulations aim to prevent oral diseases such as dental caries and gingivitis. Additionally, desire for white teeth still exists across all age groups. It is known that most whitening toothpastes are highly abrasive and can be harmful to teeth and gingiva. Therefore, a gel formulation with biomimetic hydroxyapatite (HAP; Ca5[PO4]3[OH]) as active ingredient was developed. This formulation was tested with respect to its tooth whitening properties in an in vitro study.
Materials and Methods Enamel samples were allocated to either group (a) HAP gel, (b) whitening mouth rinse phosphates, or (c) negative control (distilled water). Test products were applied by finger (a) or were rinsed (b, c) for 1, 3, and 9 (b and c only) cycles, respectively.
Results Color changes (ΔE) were measured spectrophotometrically. Group (a) showed a significant increase in color changes with respect to whitening after one cycle (mean ΔE = 5.4 [±2.66], p ≤ 0.006) and three cycles (mean ΔE = 11.2 [±3.11], p < 0.0001) compared to groups (b) and (c). For group (b), a significant increase in color change was measured after three (mean ΔE = 2.77 [±1.01], p = 0.02) and nine cycles (mean ΔE = 3.27 [±1.61], p = 0.006) compared to (c). Group (c) showed only minor and statistically insignificant color changes.
Conclusion This in vitro study demonstrated a significantly higher ad hoc whitening effect of the HAP gel compared to the mouth rinse and water after short-time application.
Objectives The aim of this in vitro study was to test the influence of the amount of toothpaste on enamel cleaning efficacy.
Materials and Methods The hydrated silica-based test toothpaste (radioactive dentin abrasion: 60.19 ± 1.35) contained all ingredients of a regular fluoride toothpaste. The cleaning efficacy of four different toothpaste amounts (1.00 g, 0.50 g [both “full length of brush”], 0.25 g [“pea-size”], and 0.125 g [“grain of rice-size”]) diluted in 1.00 mL water were each tested for different brushing times (10, 30, 60, 120, 180, and 300 seconds) using a standardized staining model on human molars with a brushing machine. Photographic documentation and colorimetric measurements were conducted, respectively, initially, after staining and after each brushing step. Colorimetric measurements were used to calculate the stain removal (in %).
Statistical Analysis Results were analyzed by one-way analysis of variance with post hoc Tukey test and Levene's test for analysis of homogeneity of variance. The level of significance α was set at ≤ 0.05.
Results The cleaning efficacy decreased significantly when using smaller toothpaste amounts. Stain removal after 120 seconds brushing time was: 77.4 ± 5.0% (1.00 g toothpaste), 75.7 ± 3.4% (0.50 g toothpaste), 54.1 ± 6.7% (0.25 g toothpaste), and 48.2 ± 7.1% (0.125 g toothpaste), respectively.
Conclusion In this in vitro study the cleaning efficacy of a medium-abrasive, hydrated silica-based toothpaste was analyzed. Note that 1.00 g toothpaste showed for all brushing times a significantly higher cleaning efficacy than 0.25 g toothpaste and 0.125 g toothpaste.
Periodontal therapy using antimicrobials that are topically applied requires slow or controlled release devices. The in vitro antimicrobial activity of biodegradable polymer formulations that contain a new minocycline lipid complex (P-MLC) was evaluated. The new P-MLC formulations that contained 11.5% minocycline were compared with pure minocycline or an existing commercial formulation, which included determination of minimal inhibitory concentration (MIC) values against two oral bacteria and activity on six-species periodontal biofilm. Moreover, the flow of gingival crevicular fluid (GCF) was modeled up to 42 days and the obtained eluates were tested both for MIC values and inhibiting biofilm formation. In general, MICs of the P-MLC formulations were slightly increased as compared with pure minocycline. Biofilm formation was clearly inhibited by all tested formulations containing minocycline with no clear difference between them. In 3.5 day old biofilms, all formulations with 250 µg/mL minocycline decreased bacterial counts by 3 log10 and metabolic activity with no difference to pure antimicrobials. Eluates of experimental formulations showed superiority in antimicrobial activity. Eluates of one experimental formulation (P503-MLC) still inhibited biofilm formation at 28 days, with a reduction by 1.87 log10 colony forming units (CFU) vs. the untreated control. The new experimental formulations can easily be instilled in periodontal pockets and represent alternatives in local antimicrobials, and thus warrant further testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.