We present an ultra-low-power Bluetooth lowenergy (BLE) transceiver (TRX) for the Internet of Things (IoT) optimized for digital 28-nm CMOS. A transmitter (TX) employs an all-digital phase-locked loop (ADPLL) with a switched current-source digitally controlled oscillator (DCO) featuring low frequency pushing, and class-E/F 2 digital power amplifier (PA), featuring high efficiency. Low 1/ f DCO noise allows the ADPLL to shut down after acquiring lock. The receiver operates in discrete time at high sampling rate (∼10 Gsamples/s) with intermediate frequency placed beyond 1/ f noise corner of MOS devices. New multistage multirate charge-sharing bandpass filters are adapted to achieve high out-of-band linearity, low noise, and low power consumption. An integrated on-chip matching network serves to both PA and low-noise transconductance amplifier, thus allowing a 1-pin direct antenna connection with no external band-selection filters. The TRX consumes 2.75 mW on the RX side and 3.7 mW on the TX side when delivering 0 dBm in BLE. Index Terms-All-digital PLL (ADPLL), Bluetooth low energy (BLE), digitally controlled oscillator (DCO), discrete-time (DT) receiver (RX), Gaussian frequency shift keying (GFSK), intermediate frequency (IF), Internet of Things (IoT), low-power (LP) transceiver (TRX), matching network, transmit/receive (T/R) switch, transmitter (TX).
A 40-nm CMOS wideband high-IF receiver is presented in this paper. The low-noise transconductance amplifier (LNTA) uses dual noise cancellation in order to improve its noise figure. The LNTA has also a folded-cascode structure to increase its output impedance and prepare for a current-mode passive mixer. This structure is merged into the output stage of the LNTA, so there is no need for extra transistors. Additionally, a modified charge-sharing bandpass filter with cross-connected transconductors to boost Q-factor is proposed and discussed. The highest voltage gain achieved by the receiver (RX) is 30 dB. The RX noise figure is 3.3 dB at the maximum gain, while the IIP3 is −2.5 dBm at 1 GHz. The area of the receiver is very competitive for the wide band considered, merely 0.137 mm 2. The RX and clock generation circuitry drain 25 mA from a 0.9-V supply.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.