Highlights d In yeast, some cell-cycle activators increase in concentration as cells grow larger d Cell-cycle inhibitors decrease in concentration as cells grow larger d These effects can explain why cells divide at increased sizes d Reversal of this natural scaling of expression caused poor cell size control
In Saccharomyces cerevisiae, commitment to cell cycle progression occurs at Start. Progression past Start requires cell growth and protein synthesis, a minimum cell size, and G 1 -phase cyclins. We examined the relationships among these factors. Rapidly growing cells expressed, and required, dramatically more Cln protein than did slowly growing cells. To clarify the role of cell size, we expressed defined amounts of CLN mRNA in cells of different sizes. When Cln was expressed at nearly physiological levels, a critical threshold of Cln expression was required for cell cycle progression, and this critical threshold varied with both cell size and growth rate: as cells grew larger, they needed less CLN mRNA, but as cells grew faster, they needed more Cln protein. At least in part, large cells had a reduced requirement for CLN mRNA because large cells generated more Cln protein per unit of mRNA than did small cells. When Cln was overexpressed, it was capable of promoting Start rapidly, regardless of cell size or growth rate. In summary, the amount of Cln required for Start depends dramatically on both cell size and growth rate. Large cells generate more Cln1 or Cln2 protein for a given amount of CLN mRNA, suggesting the existence of a novel posttranscriptional size control mechanism.
A novel multiple affinity purification (MAFT) or tandem affinity purification (TAP) tag has been constructed. It consists of the calmodulin binding peptide, six histidine residues, and three copies of the hemagglutinin epitope. This 'CHH' MAFT tag allows two or three consecutive purification steps, giving high purity. Active Clb2-Cdc28 kinase complex was purified from yeast cells after inserting the CHH tag into Clb2. Associated proteins were identified using mass spectrometry. These included the known associated proteins Cdc28, Sic1 and Cks1. Several other proteins were found including the 70 kDa chaperone, Ssa1.
DNA double-strand breaks (DSBs) are potentially lethal lesions repaired by two major pathways: homologous recombination (HR) and non-homologous end-joining (NHEJ). Homologous recombination preferentially reunites cognate broken ends. In contrast, non-homologous end-joining could ligate together any two ends, possibly generating dicentric or acentric fragments, leading to inviability. Here, we characterize the yeast NHEJ pathway in populations of pure G1 phase cells, where there is no possibility of repair using a homolog. We show that in G1 yeast cells, NHEJ is a highly effective repair pathway for gamma-ray induced breaks, even when many breaks are present. Pulsed-field gel analysis showed chromosome karyotypes following NHEJ repair of cells from populations with multiple breaks. The number of reciprocal translocations was surprisingly low, perhaps zero, suggesting that NHEJ preferentially re-ligates the “correct” broken ends instead of randomly-chosen ends. Although we do not know the mechanism, the preferential correct ligation is consistent with the idea that broken ends are continuously held together by protein-protein interactions or by larger scale chromatin structure.
The Saccharomyces cerevisiae Cdc6 protein is crucial for DNA replication. In the absence of cyclin-dependent kinase (CDK) activity, Cdc6 binds to replication origins, and loads Mcm proteins. In the presence of CDK activity, Cdc6 does not bind to origins, and this helps prevent rereplication. CDK activity affects Cdc6 function by multiple mechanisms: CDK activity affects transcription of CDC6, degradation of Cdc6, nuclear import of Cdc6, and binding of Cdc6 to Clb2. Here we examine some of these mechanisms individually. We find that when Cdc6 is forced into the nucleus during late G1 or S, it will not substantially reload onto chromatin no matter whether its CDK sites are present or not. In contrast, at a G2/M nocodazole arrest, Cdc6 will reload onto chromatin if and only if its CDK sites have been removed. Trace amounts of nonphosphorylatable Cdc6 are dominant lethal in strains bearing nonphosphorylatable Orc2 and Orc6, apparently because of rereplication. This synthetic dominant lethality occurs even in strains with wild-type MCM genes. Nonphosphorylatable Cdc6, or Orc2 and Orc6, sensitize cells to rereplication caused by overexpression of various replication initiation proteins such as Dpb11 and Sld2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.