A well-known code transformation for improving the run-time performance of a program is loop unrolling. The most obvious benefit of unrolling a loop is that the transformed loop usually requires fewer instruction executions than the original loop. The reduction in instruction executions comes from two sources: the number of branch instructions executed is reduced, and the control variable is modified fewer times. In addition, for architectures with features designed to exploit instruction-level parallelism, loop unrolling can expose greater levels of instructionlevel parallelism. Loop unrolling is an effective code transformation often improving the execution performance of programs that spend much of their execution time in loops by 10 to 30 percent. Possibly because of the effectiveness of a simple application of loop unrolling, it has not been studied as extensively as other code improvements such as register allocation or common subexpression elimination. The result is that many compilers employ simplistic loop unrolling algorithms that miss many opportunities for improving run-time performance. This paper describes how aggressive loop unrolling is done in a retargetable optimizing compiler. Using a set of 32 benchmark programs, the effectiveness of this more aggressive approach to loop unrolling is evaluated. The results show that aggressive loop unrolling can yield additional performance increase of lO to 20 percent over the simple, naive approaches employed by many production compilers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.