When assessing drought risk, most studies focus on hazard and vulnerability, paying less attention to exposure. Here, we propose a comprehensive drought risk assessment scheme combining hazard, exposure, and vulnerability. At the Mun River Basin, 90% of rice cultivation is rain-fed and regularly encounters droughts resulting in the lowest yields in the country. The water deficit calculated with respect to rice water requirement is used to assess drought hazard and is estimated at monthly time steps. We use drought severity and frequency for hazard estimation and population and rice field characteristics for exposure. Vulnerability is represented by physical and socioeconomic factors and coping and adaptive capacity. Between 1984 and 2016, monthly precipitation during the rice-growing season was insufficient to meet rice water needs at all growth stages (July-November). The hazard is more severe in October and November, which can lead to significantly reduced yields. People and rice fields in the center part of the basin are more exposed to drought than in other parts. Extensive areas are under high and moderate vulnerability due to low coping capacity. The higher drought risks appear in the last 2 months of the growing season and decrease from north to south, while the risk map of total precipitation demonstrates that most of the areas have low and very low risk. This emphasizes the importance of monthly time series analysis to calculate agricultural drought hazard and risk. Consequently, we recommend using the hazard and risk maps for October and November instead of the total precipitation to develop solutions to improve rice yield.
Agriculture productivity is regularly affected by floods and droughts, and the severity is likely to increase in the future. Even if significant efforts are spent on water development projects, ineffective project planning often means that they continue to occur or are only partly mitigated, for example, in the Mun River Basin, Thailand, where 1,000 s of water projects have been implemented. Despite this, the basin regularly experiences floods and droughts. In this study, an analysis of the adverse impacts of basin-scale floods and droughts on rice cultivation in the Mun River Basin is conducted, and an estimation of the coping capacity of existing measures. The results demonstrate that while the total storage capacity of in-situ and ongoing projects would be sufficient to tackle both hazards, it can only be achieved if the projects are effectively utilised. Based on this, proposed solutions for the region include small farm ponds, a subsurface floodwater harvesting system, and oxbow lake reconnections. The suggested measures are practicable, economical, environmentally low-impact, and their implementation (if executed with appropriate care) would reduce flood and drought problems in the basin. Notably, the measures and calculation methods proposed for this basin can also be applied to other crops and regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.