With the aim of making specific targeting of silver nanoparticles as a drug for tumor cells and developing new anticancer agents, a novel nano-composite was developed. Albumin coated silver nanoparticles (ASNPs) were synthesized, and their anti-cancerous effects were evaluated against MDA-MB 231, a human breast cancer cell line. The synthesized ASNPs were characterized by spectroscopic methods. The morphological changes of the cells were observed by inverted, florescent microscopy and also by DNA ladder pattern on gel electrophoresis; the results revealed that the cell death process occurred through the apoptosis mechanism. It was found that ASNPs with a size of 90 nm and negatively charged with a zeta-potential of about −20 mV could be specifically taken up by tumor cells. The LD50 of ASNPs against MDA-MB 231 (5 μM), was found to be 30 times higher than that for white normal blood cells (152 μM). The characteristics of the synthesized ASNPs included; intact structure of coated albumin, higher cytotoxicity against cancer cells than over normal cells, and cell death based on apoptosis and reduction of gland tumor sizes in mice. This work indicates that ASNPs could be a good candidate for chemotherapeutic drug.
The thermoresponsive amphiphilic block copolymer poly(d,l-lactic acid-co-glycolic acid)-block-poly(ethylene glycol)-block-poly(d,l-lactic acid-co-glycolic acid) (PLGA-PEG -PLGA), which exhibits a reversible temperature-induced sol-gel transition at higher polymer concentrations in aqueous solution has attached a great deal of interest because of its potential in biomedical applications. In the present work, the length of the hydrophobic PLGA blocks is kept constant, whereas the length of the hydrophilic PEG block is altered and this variation has a pronounced impact on the phase behavior of the aqueous samples and the structure of the polymer. A short PEG block promotes gelation at a low temperature, whereas a longer PEG block shifts the gelation point to higher temperature. By using a combination of turbidity, rheology, and small angle neutron scattering (SANS) methods, the authors have revealed dramatic temperature effects. In dilute solution, the SANS experiments expose asymmetric ellipsoid structures for the copolymer with the short PEG-spacer, whereas spherical core-shell structure is observed for the polymer with long PEG-spacer. In the semidilute concentration regime, SANS measurements disclose similar profiles for the two copolymers. In a broad temperature interval, the transition from spherical core-shell micelles to cylindrical structure and packing of cylinders is observed.
The effects of two extracting methods on the total phenolic and total flavonoid contents of Crataegus pentagyna subsp. elburensis Waldst. & Kit. ex Willd fruit extracts were investigated. Antioxidant activities of polyphenol (PP) fraction and ultrasonic (US) extraction were evaluated with four different in vitro antioxidant tests. IC(50) for DPPH radical-scavenging activity was 32.2 ± 1.6 for PP fraction and 36.7 ± 1.5 µg mL(-1) for US extract. Reducing powers of extracts increased with the increase of their concentrations. PP fraction exhibited high reducing power at 2-32 µg mL(-1). Extracts exhibited good H(2)O(2) radical scavenging and Fe(2+) chelating ability. Their high phenolic and flavonoid contents could be responsible for their antioxidant activity and pharmacologic actions.
Aim:For isolation of exosomes, differential ultracentrifugation and an isolation kit from a major vendor were compared.Materials & methods:‘Case study’ exosomes isolated from patient-derived cells from glioblastoma multiforme and a breast cancer cell line were analyzed.Results:Transmission electron microscopy, dynamic light scattering, western blotting, and so forth, revealed comparable performance. Potential protein biomarkers for both diseases were also identified in the isolates using nanoLC–MS. Western blotting and nanoLC–MS also revealed negative exosome markers regarding both isolation approaches.Conclusion:The two isolation methods had an overall similar performance, but we hesitate to use the term ‘exosome isolation’ as impurities may be present with both isolation methods. NanoLC–MS can detect disease biomarkers in exosomes and is useful for critical assessment of exosome enrichment procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.