Abstract:In the paper, we review our work on heterogeneous III-V-on-silicon photonic components and circuits for applications in optical communication and sensing. We elaborate on the integration strategy and describe a broad range of devices realized on this platform covering a wavelength range from 850 nm to 3.85 μm.
Abstract-In this paper we discuss silicon-based photonic integrated circuit technology for applications beyond the telecommunication wavelength range. Silicon-on-insulator and germaniumon-silicon passive waveguide circuits are described, as well as the integration of III-V semiconductors, IV-VI colloidal nanoparticles and GeSn alloys on these circuits for increasing the functionality. The strong nonlinearity of silicon combined with the low nonlinear absorption in the mid-infrared is exploited to generate picosecond pulse based supercontinuum sources, optical parametric oscillators and wavelength translators connecting the telecommunication wavelength range and the mid-infrared.
Picosecond-pulse III-V-on-silicon mode-locked lasers based on linear and ring extended cavity geometries are presented. In passive modelocked operation a 12 kHz -3dB linewidth of the fundamental RF tone at 4.7 GHz is obtained for the linear cavity geometry and 16 kHz for the ring cavity geometry. Stabilization of the repetition rate of these devices using hybrid mode-locking is also demonstrated.
Abstract:In this paper we elaborate on our work in the field of midinfrared photonic integrated circuits for spectroscopic sensing applications. We discuss the use of silicon-based photonic integrated circuits for this purpose and detail how a variety of optical functions in the mid-infrared besides passive waveguiding and filtering can be realized, either relying on nonlinear optics or on the integration of other materials such as GaSb-based compound semiconductors, GeSn epitaxy and PbS colloidal nanoparticles.
Mode-locked fiber and solid state lasers have played an essential role in several scientific and technological developments. The integration of mode-locked lasers on chips could enable their use in a wide range of applications. The advancement of semiconductor mode-locked laser diodes has been going on for several decades, but has recently seen the development of novel devices based on generic InP and III-V-on-silicon photonic integration platforms. These photonic integration platforms enable the use of standardized components and low-loss waveguides within the laser cavity, allowing for the design of advanced extended cavities. In this manuscript we give a review of these novel devices and compare their performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.