Current computing architectures are commonly built with multiple cores and a single shared main memory. Even though this architecture increases the overall computation power, main memory can easily become a bottleneck. Simultaneous access to main memory from multiple cores can cause both (1) severe degradation in performance and (2) unpredictable execution time for real-time applications. We propose in this paper to mitigate these two problems by co-scheduling cores as well as the main memory for predictable execution. In particular, we use a DMA component to overlap memory with computation for hiding the memory latency and therefore increasing the system performance. The main contribution of this paper is a novel global co-scheduling algorithm along with its associated schedulability analysis for sporadic hard real-time tasks. We evaluated our system by generating synthetic tasksets based on real benchmark parameters. The results show a significant improvement in system utilization while retaining a predictable system behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.