Abstract. During September/October 1991, NASA's Global Tropospheric Experiment (GTE) conducted an airborne field measurement program (PEM-West A) in the troposphere over the western Pacific Ocean. In this paper we describe and use the relative abundance of the combustion products C2H 2 and CO to classify air masses encountered during PEM-West A based on the degree that these tracers were processed by the combined effects of photochemical reactions and dynamical mixing (termed the degree of atmospheric processing). A large number of trace compounds (e.g., C2H6, C3H8, C6H6, NOy, and 03) are found to be well correlated with the degree of atmospheric processing that is reflected by changes in the ratio of C2H2/CO over the range of values from --0.3 to 2.0 (parts per trillion volume) C2H2/(parts per billion volume) CO. This C2H2/CObased classification scheme is compared to model simulations and to two independent classification schemes based on air mass back-trajectory analyses and lidar profiles of 03 and aerosols. In general, these schemes agree well, and in combination they suggest that the functional dependence that other observed species exhibit with respect to the C2H2/CO atmospheric processing scale can be used to study the origin, sources, and sinks of trace species and to derive several important findings. First, the degree of atmospheric processing is found to be dominated by dilution associated with atmospheric mixing, which is found to primarily occur through the vertical mixing of relatively recent emissions of surface layer trace species. Photochemical reactions play their major role by influencing the background concentrations of trace species that are entrained during the mixing (i.e., dilution) process. Second, a significant noncontinental source(s) of NO (and NOx) in the free troposphere is evident. In particular, the enhanced NO mixing ratios that were observed in convected air masses are attributed to either emissions from lightning or the rapid recycling of NOy compounds. Third, nonsoluble trace species emitted in the continental boundary layer, such as CO and hydrocarbons, are vertically transported to the upper troposphere as efficiently as they are to the midtroposphere. In addition, the mixing ratios of CO and hydrocarbons in the upper troposphere over the western Pacific may reflect a significant contribution from northern hemisphere land areas other than Asia. Finally, we believe that these results can be valuable for the quantitative evaluation of the vertical transport processes that are usually parameterized in models.
Abstract. Extensive observations of tropospheric trace species during the second NASA Global Tropospheric Experiment Western Pacific Exploratory Mission (PEM-West B) in February-March 1994 showed significant seasonal variability in comparison with the first mission (PEM-West A), conducted in September-October 1991. In this study we adopt a previously established analytical method, i.e., the ratio C2H2/CO as a measure of the relative degree of atmospheric processing, to elucidate the key similarities and variations between the two missions. In addition, the C2H2/CO ratio scheme is combined with the back-trajectory-based and the LIDAR-based air mass classification schemes, respectively, to make in-depth analysis of the seasonal variation between PEM-West A and PEM-West B (hereinafter referred to as PEM-WA and PEM-WB). A large number of compounds, including long-lived NMHCs, CH4, and CO2, are, as expected, well correlated with the ratio C2H2/CO. In comparison with PEM-WA, a significantly larger range of observed C2H2/CO values at the high end for the PEM-WB period indicates that the western Pacific was more impacted by "fresher" source emissions, i.e., faster or more efficient continental outflow. As in the case of PEM-WA, the C2H2/CO scheme complements the back-trajectory air mass classification scheme very well. By combining the two schemes, we found that the atmospheric processing in the region is dominated by atmospheric mixing for the trace species analyzed. This PEM-WB wintertime result is similar to that found in PEM-WA for the autumn. In both cases, photochemical reactions are found to play a significant role in determining the background mixing ratios of trace gases, and in this way the two processes are directly related and dependent upon each other. This analysis also indicates that many of the upper tropospheric air masses encountered over the western Pacific during PEM-WB may have had little impact from eastern Asia's continental surface sources. NOx mixing ratios were significantly enhanced during PEM-WB when compared with PEM-WA, in the upper troposphere's more atmospherically processed air masses. These high levels of NOx resulted in a substantial amount of photochemical production of 0 3. A lack of corresponding enhancements in surface emission tracers strongly implies that in situ atmospheric sources such as lightning are responsible for the enhanced upper tropospheric NOx. The similarity in NOx values between the northern (higher air traffic) and southern continental air masses together with the indications of a large seasonal shift suggests that aircraft emissions are not the dominant source. However, photochemical recycling cannot be ruled out as this in situ source of NOx.
This paper introduces a method of image filtering for viewing gravity waves in satellite imagery, which is particularly timely to the advent of the next-generation Advanced Himawari Imager (AHI) and the Advanced Baseline Imager (ABI). Applying a “high pass” filter to the upper-troposphere water vapor channel reveals sub-Kelvin-degree variations in brightness temperature that depict an abundance of gravity wave activity at the AHI/ABI sensitivity. Three examples demonstrate that this high-pass product can be exploited in a forecasting setting to identify possible varieties of turbulence-prone gravity waves that either 1) move roughly orthogonally to the apparent background flow or 2) produce interference as separate wave packets pass through the same location.
Earth‐orbiting satellites have long been used to examine meteorological processes. In the context of severe weather, brightness temperatures (BTs) at infrared wavelengths allow the determination of convective cloud properties. The anvils of cumulonimbus clouds, for example, typically produce BTs close to the tropopause temperature. Particularly severe storms generate overshoots that penetrate the stratosphere and are cooler than the anvil. In this study, we describe clustered storm overshoots in the tropical West Pacific on December 29, 2018 that resulted in the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard NOAA‐20 measuring a temperature of 161.96K (−111.2°C), which is, to our knowledge, the coldest on record. We describe the local meteorological conditions, examine the VIIRS overpass that produced the cold temperature, compare VIIRS with other sensors that observed the region and, finally, analyze the historical context provided by two other satellite instruments to show that such cold temperatures may be becoming more common.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.