Background
Anethole (AN) is an organic antioxidant compound with a benzene ring and is expected to have a positive impact on early embryogenesis in mammals. However, no study has examined the effect of AN on porcine embryonic development. Therefore, we investigated the effect of AN on the development of porcine embryos and the underlying mechanism.
Results
We cultured porcine in vitro-fertilized embryos in medium with AN (0, 0.3, 0.5, and 1 mg/mL) for 6 d. AN at 0.5 mg/mL significantly increased the blastocyst formation rate, trophectoderm cell number, and cellular survival rate compared to the control. AN-supplemented embryos exhibited significantly lower reactive oxygen species levels and higher glutathione levels than the control. Moreover, AN significantly improved the quantity of mitochondria and mitochondrial membrane potential, and increased the lipid droplet, fatty acid, and ATP levels. Interestingly, the levels of proteins and genes related to the sonic hedgehog (SHH) signaling pathway were significantly increased by AN.
Conclusions
These results revealed that AN improved the developmental competence of porcine preimplantation embryos by activating SHH signaling against oxidative stress and could be used for large-scale production of high-quality porcine embryos.
Luteolin (Lut), a polyphenolic compound that belongs to the flavone subclass of flavonoids, possesses anti-inflammatory, cytoprotective, and antioxidant activities. However, little is known regarding its role in mammalian oocyte maturation. This study examined the effect of Lut supplementation during in vitro maturation (IVM) on oocyte maturation and subsequent developmental competence after somatic cell nuclear transfer (SCNT) in pigs. Lut supplementation significantly increased the proportions of complete cumulus cell expansion and metaphase II (MII) oocytes, compared with control oocytes. After parthenogenetic activation or SCNT, the developmental competence of Lut-supplemented MII oocytes was significantly enhanced, as indicated by higher rates of cleavage, blastocyst formation, expanded or hatching blastocysts, and cell survival, as well as increased cell numbers. Lut-supplemented MII oocytes exhibited significantly lower levels of reactive oxygen species and higher levels of glutathione than control MII oocytes. Lut supplementation also activated lipid metabolism, assessed according to the levels of lipid droplets, fatty acids, and ATP. The active mitochondria content and mitochondrial membrane potential were significantly increased, whereas cytochrome c and cleaved caspase-3 levels were significantly decreased, by Lut supplementation. These results suggest that Lut supplementation during IVM improves porcine oocyte maturation through the reduction of oxidative stress and mitochondria-mediated apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.