In vitro culture (IVC) for porcine embryo development is inferior compared to in vivo development because oxidative stress can be induced by the production of excessive reactive oxygen species (ROS) under high oxygen tension in the in vitro environment. To overcome this problem, we investigated the effect of lycopene, an antioxidant carotenoid, on developmental competence and the mechanisms involved in mitochondria-dependent apoptosis pathways in porcine embryos. In vitro fertilized (IVF) embryos were cultured in IVC medium supplemented with 0, 0.02, 0.05, 0.1, or 0.2 μM lycopene. The results indicate that 0.1 μM lycopene significantly increased the rate of blastocyst formation and the total cell numbers, including trophectoderm cell numbers, on Day In terms of mitochondria-dependent apoptosis, IVF embryos treated with 0.1 μM lycopene exhibited significantly decreased levels of ROS, increased mitochondrial membrane potential, and decreased expression of cytochrome c on Days 2 and Furthermore, 0.1 μM lycopene significantly decreased the number and percentage of caspase 3-positive and apoptotic cells in Day-6 blastocysts. In addition, Day-2 embryos and Day-6 blastocysts treated with 0.1 μM lycopene showed significantly reduced mRNA expression related to antioxidant enzymes (SOD1, SOD2, CATALASE) and apoptosis (BAX/BCL2L1 ratio). These results indicate that lycopene supplementation during the entire period of IVC enhanced embryonic development in pigs by regulating oxidative stress and mitochondria-dependent apoptosis.
Increasing evidence has demonstrated that oxidative stress impairs oocyte maturation, but the underlying mechanisms remain largely unknown. Here, for the first time, we examined the antioxidant role of luteolin in meiotic progression and the underlying mechanisms. Supplementation of 5 μM luteolin increased the rates of first polar body extrusion and blastocyst formation after parthenogenetic activation, and the expression levels of oocyte competence (BMP15 and GDF9)-, mitogen-activated protein kinase (MOS)-, and maturation promoting factor (CDK1 and Cyclin B)-related genes were also improved. Luteolin supplementation decreased intracellular reactive oxygen species levels and increased the expression levels of oxidative stress-related genes (SOD1, SOD2, and CAT). Interestingly, luteolin alleviated defects in cell organelles, including actin filaments, the spindle, mitochondria, the endoplasmic reticulum, and cortical granules, caused by H2O2 exposure. Moreover, luteolin significantly improved the developmental competence of in vitro-fertilized embryos in terms of the cleavage rate, blastocyst formation rate, cell number, cellular survival rate, and gene expression and markedly restored the competencies decreased by H2O2 treatment. These findings revealed that luteolin supplementation during in vitro maturation improves porcine meiotic progression and subsequent embryonic development by protecting various organelle dynamics against oxidative stress, potentially increasing our understanding of the underlying mechanisms governing the relationship between oxidative stress and the meiotic events required for successful oocyte maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.