Nanotransfer printing technology offers outstanding simplicity and throughput in the fabrication of transistors, metamaterials, epidermal sensors and other emerging devices. Nevertheless, the development of a large-area sub-50 nm nanotransfer printing process has been hindered by fundamental reliability issues in the replication of high-resolution templates and in the release of generated nanostructures. Here we present a solvent-assisted nanotransfer printing technique based on high-fidelity replication of sub-20 nm patterns using a dual-functional bilayer polymer thin film. For uniform and fast release of nanostructures on diverse receiver surfaces, interface-specific adhesion control is realized by employing a polydimethylsiloxane gel pad as a solvent-emitting transfer medium, providing unusual printing capability even on biological surfaces such as human skin and fruit peels. Based on this principle, we also demonstrate reliable printing of high-density metallic nanostructures for non-destructive and rapid surface-enhanced Raman spectroscopy analyses and for hydrogen detection sensors with excellent responsiveness.
Flexible memory is the fundamental component for data processing, storage, and radio frequency communication in flexible electronic systems. Among several emerging memory technologies, phase-change random-access memory (PRAM) is one of the strongest candidate for next-generation nonvolatile memories due to its remarkable merits of large cycling endurance, high speed, and excellent scalability. Although there are a few approaches for flexible phase-change memory (PCM), high reset current is the biggest obstacle for the practical operation of flexible PCM devices. In this paper, we report a flexible PCM realized by incorporating nanoinsulators derived from a Si-containing block copolymer (BCP) to significantly lower the operating current of the flexible memory formed on plastic substrate. The reduction of thermal stress by BCP nanostructures enables the reliable operation of flexible PCM devices integrated with ultrathin flexible diodes during more than 100 switching cycles and 1000 bending cycles.
In situ nanolithography is realized based on warm spin-casting of block copolymer solutions. This advancement is based on Si-containing block copolymers with an appropriate thermodynamic driving force for spontaneous phase-separation combined with the thermal assistance provided by slight temperature elevations during the spin-casting. Sub-10 nm half-pitch nanoscale patterns are produced within 30 s without a separate annealing process.
The fabrication of a highly ordered array of single-crystalline nanostructures prepared from solution-phase or vapor-phase synthesis methods is extremely challenging due to multiple difficulties of spatial arrangement and control of crystallographic orientation. Herein, we introduce a nanotransplantation printing (NTPP) technique for the reliable fabrication, transfer, and arrangement of single-crystalline Si nanowires (NWs) on diverse substrates. NTPP entails (1) formation of nanoscale etch mask patterns on conventional low-cost Si via nanotransfer printing, (2) two-step combinatorial plasma etching for defining Si NWs, and (3) detachment and transfer of the NWs onto various receiver substrates using an infiltration-type polymeric transfer medium and a solvent-assisted adhesion switching mechanism. Using this approach, high-quality, highly ordered Si NWs can be formed on almost any type of surface including flexible plastic substrates, biological surfaces, and deep-trench structures. Moreover, NTPP provides controllability of the crystallographic orientation of NWs, which is confirmed by the successful generation of (100)- and (110)-oriented Si NWs with different properties. The outstanding electrical properties of the NWs were confirmed by fabricating and characterizing Schottky junction field-effect transistors. Furthermore, exploiting the highly flexible nature of the NWs, a high-performance piezoresistive strain sensor, with a high gauge factor over 200 was realized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.