ABSTRACT:The biodegradation of Cypermethrin (20 to 125 mg/L) in an effluent using batch activated sludge was studied. Degradation was found to occur to a great extent only in the presence of Pseudomonas (IES-Ps-1) culture. Under aerobic conditions using mechanical aerators, Cypermethrin (20 mg/L) was almost completely degraded in just over 48 h at ambient temperature. Further loading of organic compound in subsequent experiments demonstrated that IES-PS-1was capable to degrade 82 % Cypermethrin at 40 mg/L dose in approximately 48 h. When the concentration was increased to 80 mg/L, 50% degradation of this compound was observed. Over this time period the cells could utilize only 17 % of Cypermethrin when it was given 125 mg/L, respectively. These findings indicate that increased concentration of Cypermethrin has a marked effect on biodegradation performance of IES-Ps-1 with a modest increased in the duration of lag phase, but did not lead to complete inhibition or cell death. These results proved that IES-Ps-1 is responsible for Cypermethrin degradation. Such finding may be useful in designing a scale-up in situ or on-site hazardous waste bioremediation process for field application.
In Pakistan, to increase agricultural production, higher amounts of fertilizers and pesticides are being used. The residues of the applied pesticides stay in the environment and therefore causing contamination of air, water and land. Moreover, agricultural industries are also contributing relatively high quantities of toxic pesticides into the environment. Since most of them have no treatment facilities. These pesticides may be toxic, mutagenic or carcinogenic. They may be bioaccumulated or biomagnified by the biota. Therefore its removal from environmental systems needs special attention. In this study, bacterial isolate, Pseudomonas, designated as IES-Ps-1, was used to assess its potential for pesticide removal from industrial wastewater using the biosimulator (activated sludge process). During experimental studies conducted in the flask as well as in biosimulator, it was observed that IES-Ps-1 grows normally at low concentrations of added insecticides when compared with the control test (without pesticide). However, at high concentrations the microbial count decreased but no death occurred and the culture remained in lag phase. In many cases, the growth of organisms in the presence of the particular substrate serves as an indication about its metabolic potential. However, to confirm these results, chemical oxygen demand (COD) and HPLC analysis were performed. Under aerobic culture conditions using mechanical aerators in biosimulator, almost complete removal of Cypermethrin at 20 mg/L dose occurred during 48 h. The study findings indicate that IES-Ps-1 strain, can be used for the treatment of the pesticide contaminated environment. Such study may be valuable to scientist and engineers, who are trying to develop methods for the treatment of toxic organic waste using the biological treatment process.
Cypermethrin, a least water soluble pesticide, was selected because such compounds are very difficult to remove from environmental systems by conventional means. In this study, Pseudomonas strain (IES-Ps-1) was used to assess its potential for Cypermethrin degradation. Continuous agitation of a wastewater sample in biosimulator was found to be suitable for growth as well as the metabolism of Cypermethrin by Pseudomonas. At optimum temperature (28-30ºC) using 8-9 mg/L dissolved oxygen (DO), >85% degradation of Cypermethrin was achieved after 48 hours when the initial added concentration was 80 mg/L. In contrast, at 5-6 mg/L DO, only 38% degradation occurred. When the concentration of DO further increased from 9 to 12mg/l, no pronounced effect on the removal efficiency was observed. Results were confirmed by COD and HPLC analysis. Moreover, during treatment, no significant effect of pH change was observed and the pH remains between 7.3 and 8.8. The findings suggest that IES-Ps-1 strain could effectively be used for the removal of pesticide waste.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.