Intestinal microbiota plays a crucial role in immune development and disease progression in mammals from birth onwards. The gastrointestinal tract of newborn mammals is rapidly colonized by microbes with tremendous biomass and diversity. Understanding how this complex of segmental communities evolves in different gastrointestinal sites over time has great biological significance and medical implications. However, most previous reports examining intestinal microbiota have focused on fecal samples, a strategy that overlooks the spatial microbial dynamics in different intestinal segments. Using intestinal digesta from six intestinal segments (duodenum, jejunum, ileum, cecum, colon and rectum) of newborn piglets, we herein conducted a large-scale 16S rRNA gene sequencing-based study to characterize the segmental dynamics of porcine gut microbiota at eight postnatal intervals (days 1, 7, 14, 21, 28, 35, 120 and 180). A total of 4,465 OTUs were obtained and showed that the six intestinal segments could be divided into three parts; in the duodenum-jejunum section, the most abundant genera included
Lactobacillus
and
Bacteroides
; in the ileum,
Fusobacterium
and
Escherichia
; and in the cecum-rectum section,
Prevotella
. Although the microbial communities of the piglets were similar among the six intestinal segments on postnatal day 1, they evolved and quickly differentiated at later intervals. An examination of time-dependent alterations in the dominant microbes revealed that the microbiome in the large intestine was very different from and much more stable than that in the small intestine. The gut microbiota in newborn piglets exhibited apparent temporal and spatial variations in different intestinal segments. The database of gut microbes in piglets could be a referable resource for future studies on mammalian gut microbiome development in early host growth phases.
Escherichia coli F18 bacteria producing enterotoxins and/or shigatoxin (ETEC/STEC) are main pathogens that cause oedema disease and postweaning diarrhoea in piglets, and alpha-1-fucosyltransferase (FUT1) gene has been identified as a candidate gene for controlling the expression of ETEC F18 receptor. The genetic variations at nucleotide position 307 in open reading frame of FUT1 gene in one wild boar breed and 20 western commercial and Chinese native pig breeds were investigated by polymerase chain reaction-restriction fragment length polymorphism. The results showed that the genetic polymorphisms of the FUT1 locus were only detected in western pig breeds and the Chinese Taihu (including Meishan pig, Fengjing pig and Erhualian pig), Huai and Lingao pig breeds; only Duroc and Pietrain possessed the resistant AA genotype, while the wild boar and other Chinese pig breeds only presented the susceptible genotype GG. The results indicated that Chinese native pig breeds lack genetic factors providing resistance to ETEC F18 bacteria. The resistant allele to ETEC F18 might originate from European wild boar. It was inferred that oedema and postweaning diarrhoea caused by ETEC F18 have close relationship with the growth rate, which can explain why on the contrary Chinese native pig breeds have stronger resistance to oedema and postweaning diarrhoea in piglets compared with western pig breeds.
Longissimus dorsi muscle (LD) proteomics provides a novel opportunity to reveal the molecular mechanism behind intramuscular fat deposition. Unfortunately, the vast amounts of lipids and nucleic acids in this tissue hampered LD proteomics analysis. Trichloroacetic acid (TCA)/acetone precipitation is a widely used method to remove contaminants from protein samples. However, the high speed centrifugation employed in this method produces hard precipitates, which restrict contaminant elimination and protein re-dissolution. To address the problem, the centrifugation precipitates were first grinded with a glass tissue grinder and then washed with 90% acetone (TCA/acetone-G-W) in the present study. According to our result, the treatment for solid precipitate facilitated non-protein contaminant removal and protein re-dissolution, ultimately improving two-dimensional gel electrophoresis (2-DE) analysis. Additionally, we also evaluated the effect of sample drying on 2-DE profile as well as protein yield. It was found that 30 min air-drying did not result in significant protein loss, but reduced horizontal streaking and smearing on 2-DE gel compared to 10 min. In summary, we developed an optimized TCA/acetone precipitation method for protein extraction of LD, in which the modifications improved the effectiveness of TCA/acetone method.
Signal transducer and activator of transcription 3 (STAT3) plays a critical role in leptin-mediated regulation of energy metabolism. This study investigated genetic variation in STAT3 promoter regions and verified their contribution to bovine body size traits. We first estimated the degree of conservation in STAT3, followed by measurements of its mRNA expression during fetal and adult stages of Qinchuan cattle. We then sequenced the STAT3 promoter region to determine genetic variants and evaluate their association with body size traits. From fetus to adult, STAT3 expression increased significantly in muscle, fat, heart, liver, and spleen tissues (p < 0.01), but decreased in the intestine, lung, and rumen (p < 0.01). We identified and named five single nucleotide polymorphisms (SNPs): SNP1-304A>C, SNP2-285G>A, SNP3-209A>C, SNP4-203A>G, and SNP5-188T>C. These five mutations fell significantly outside the Hardy–Weinberg equilibrium (HWE) (Chi-squared test, p < 0.05) and significantly associated with body size traits (p < 0.05). Individuals with haplotype H3H3 (CC-GG-CC-GG-CC) were larger in body size than other haplotypes. Therefore, variations in the STAT3 gene promoter regions, most notably haplotype H3H3, may benefit marker-assisted breeding of Qinchuan cattle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.