A feasible approach is reported to reduce the switching current and increase the nonlinearity in a complementary metal-oxide-semiconductor (CMOS)-compatible Ti/SiN /p -Si memristor by simply reducing the cell size down to sub-100 nm. Even though the switching voltages gradually increase with decreasing device size, the reset current is reduced because of the reduced current overshoot effect. The scaled devices (sub-100 nm) exhibit gradual reset switching driven by the electric field, whereas that of the large devices (≥1 µm) is driven by Joule heating. For the scaled cell (60 nm), the current levels are tunable by adjusting the reset stop voltage for multilevel cells. It is revealed that the nonlinearity in the low-resistance state is attributed to Fowler-Nordheim tunneling dominating in the high-voltage regime (≥1 V) for the scaled cells. The experimental findings demonstrate that the scaled metal-nitride-silicon memristor device paves the way to realize CMOS-compatible high-density crosspoint array applications.
The recent reports of various photodetectors based on molybdenum disulfide (MoS2) field effect transistors showed that it was difficult to obtain optoelectronic performances in the broad detection range [visible–infrared (IR)] applicable to various fields. Here, by forming a mono-/multi-layer nano-bridge multi-heterojunction structure (more than > 300 junctions with 25 nm intervals) through the selective layer control of multi-layer MoS2, a photodetector with ultrasensitive optoelectronic performances in a broad spectral range (photoresponsivity of 2.67 × 106 A/W at λ = 520 nm and 1.65 × 104 A/W at λ = 1064 nm) superior to the previously reported MoS2-based photodetectors could be successfully fabricated. The nano-bridge multi-heterojunction is believed to be an important device technology that can be applied to broadband light sensing, highly sensitive fluorescence imaging, ultrasensitive biomedical diagnostics, and ultrafast optoelectronic integrated circuits through the formation of a nanoscale serial multi-heterojunction, just by adding a selective layer control process.
In this letter, a bipolar resistive-switching random-access memory (RRAM) in Ni/Si3N4/SiO2/p+-Si structure and its fabrication process are demonstrated. The proposed device with double-layer dielectrics consisting of Si3N4 layer (5 nm) as a resistive switching and SiO2 (2.5 nm) layer for the tunnel barrier is investigated in comparison with that having a single layer of Si3N4. Double-layer cell shows ultra-low power operation under a compliance current (ICOMP) of 500 nA, which ensures the reset current (IRESET) of sub-1 μA much lower than that of the single-layer cell. Also, large on/off ratio (∼105) has been obtained since the SiO2 layer efficiently suppresses the current in the high-resistance state. Moreover, maximum selectivity in double-layer cell is 122 when 1/2 read bias scheme is applied to the crossbar array. Highly nonlinear I-V characteristics of the double-layer Si3N4-based RRAM cell warrant the realization of selector-free RRAM cell in the crossbar array pursuing higher integration density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.