Despite many uses of ultrasound, some pathologies such as breast cancer still cannot reliably be diagnosed in either conventional B-mode ultrasound imaging nor with more recent ultrasound elastography methods. Speed-of-sound (SoS) is a quantitative imaging biomarker, which is sensitive to structural changes due to pathology, and hence could facilitate diagnosis. Full-angle Ultrasound Computed Tomography (USCT) was proposed to obtain spatially-resolved SoS images, however, its water-bath setup involves practical limitations. To increase clinical utility and for widespread use, recently, a limited-angle Fourier-domain SoS reconstruction was proposed, however, it suffers from significant image reconstruction artifacts. In this work, we present a SoS reconstruction strategy, where the forward problem is formulated using differential time-of-flight measurements based on apparent displacements along different ultrasound wave propagation paths, and the inverse problem is solved in spatial-domain using a proposed total-variation scheme with spatially-varying anisotropic weighting to compensate for geometric bias from limited angle imaging setup. This is shown to be robust to missing displacement data and easily allow for incorporating any prior geometric information. In numerical simulations, SoS values in inclusions are accurately reconstructed with 90% accuracy up to a noise level of 50%. With respect to Fourier-domain reconstruction, our proposed method improved contrast ratio from 0.37 to 0.67 for even high noise levels such as 50%. Numerical fullwave simulation and our preliminary in-vivo results illustrate the clinical applicability of our method in a breast cancer imaging setting. Our proposed method requires single-sided access to the tissue and can be implemented as an add-on to conventional ultrasound equipment, applicable to a range of transducers and applications.
The present study investigates the influence of moisture content on the elastic characteristics of beech wood (Fagus sylvatica L.) by means of ultrasonic waves. A set of elastic engineering parameters (i.e. three Young's moduli, three shear moduli and six Poisson's ratios) is determined at four specific moisture contents. The results reveal the significant influence of the moisture content on the elastic behaviour of beech wood. With the exception of some Poisson's ratios, the engineering parameters decrease with increasing moisture content, indicating a decline in stiffness at higher moisture contents. At the same time, wood anisotropy, displayed by the two-dimensional representation of the velocity surface, remains almost unchanged. The results prove that the ultrasonic technique is suitable for determining the elastic moduli. However, non-diagonal terms of the stiffness matrix must be considered when calculating the Young's moduli. This is shown experimentally by comparing the ultrasonic Young's moduli calculated without, and allowing for, the non-diagonal terms. While the ultrasonic technique is found to be reliable to measure the elastic moduli, based on the measured values, its eligibility to measure the Poisson's ratios remains uncertain.
Speed-of-sound (SoS) has large potential for tissue and pathology differentiation. We aim to develop a novel Ultrasound Computed Tomography (USCT) technique that can reconstruct local SoS in tissue on conventional ultrasound machines with hand-held linear arrays. Methods: A passive reflector is placed opposite the tissue sample as an echogenic reference to measure the time-of-flight (ToF) of ultrasound wavefronts. A Dynamic Programming algorithm provides a robust ToF measurements based on global optimization of all transmit-receive echo data. An Anisotropically-Weighted Total Variation (AWTV) algorithm allows sharp delineation of focal lesions based on limited-angle USCT data. Results: Inclusions, which are not visible in conventional ultrasound, could be delineated in SoS images. AWTV allows to reconstruct focal lesions with a contrast-ratio of 93.7% of their nominal value, compared to that of 31.5% with conventional least-squares based algebraic tomographic reconstruction. In fullwave simulations of realistic heterogeneous breast models, a high CR of 84.3% is observed, with the reconstruction filtering out background heterogeneity. In experiments, our proposed method quantifies SoS in a homogeneous background with an accuracy of 0.93 m s −1 , allowing to differentiate several tissue types. Conclusion: We validate our method using numerical simulations with ray-tracing and full-wave models, and phantom and ex-vivo data. Preliminary in-vivo results show the potential of this new technique to detect and differentiate malignant and benign lesions in the breast. Significance: Breast cancer is the most common cancer in women. Ultrasound B-mode only provides qualitative information about breast lesions, whereas USCT can provide quantitative tissue imaging biomarkers, such as SoS. The proposed method can potentially be implemented as a complementary modality to ultrasound for tissue and disease differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.