In recent years, spurred on by the development and availability of programmable NICs, end hosts have increasingly become the enforcement point for core network functions such as load balancing, congestion control, and application specific network offloads. However, implementing custom designs on programmable NICs is not easy: many potential bottlenecks can impact performance. This paper focuses on the performance implication of PCIe, the de-facto I/O interconnect in contemporary servers, when interacting with the host architecture and device drivers. We present a theoretical model for PCIe and pcie-bench, an open-source suite, that allows developers to gain an accurate and deep understanding of the PCIe substrate. Using pcie-bench, we characterize the PCIe subsystem in modern servers. We highlight surprising differences in PCIe implementations, evaluate the undesirable impact of PCIe features such as IOMMUs, and show the practical limits for common network cards operating at 40Gb/s and beyond. Furthermore, through pcie-bench we gained insights which guided software and future hardware architectures for both commercial and research oriented network cards and DMA engines.
In this paper, a new thermal monitoring strategy suitable for field programmable logic array (FPGA)-based systems is developed. The main idea is that a fully digital temperature transducer can be dynamically inserted, operated, and eliminated from the circuit under test using run-time reconfiguration. A ring-oscillator together with its auxiliary blocks (basically counting and control stages) is first placed in the design. After the actual temperature of the die is captured, the value is read back via the FPGA configuration port. Then, the sensor is eliminated from the chip in order to release programmable resources and avoid self-heating. All the hardware of the sensor is written in Java, using the JBits API provided by the chip manufacturer. The main advantage of the technique is that the sensor is completely stand-alone, no I/O pads are required, and no permanent use of any FPGA element is done. Additionally, the sensor is small enough to arrange an array of them along the chip. Thus, FPGAs became a new tool for researchers interested in the thermal aspects of integrated circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.