The objective of this paper was to develop fuzzy models for asphalt pavement performance. The fuzzy logic can convert linguistic or qualitative variables into quantitative values. This feature makes it possible to gather experts’ experience about the knowledge they have on factors that affect the pavement performance and its state condition. Forms developed in an organized way were applied for acquiring the knowledge from experts on pavement construction and maintenance. The variables pavement age, traffic, International Roughness Index (IRI) and Flexible Pavement Condition Index (FPCI) were associated with numerical scales and linguistic concepts such as new, old, light, heavy, good, fair, and poor. From the information obtained through the application of forms, variables were modeled with the aid of software InFuzzy and fuzzy models were developed for IRI and FPCI. For validating the model, a straight line adjustment was used to relate the predicted to the observed data. Also, the corresponding correlation coefficient (r) was calculated and residuals were analyzed. The developed models fitted to observed data and correlation coefficient r = 0.71 and 0.70, respectively.
AGRADECIMENTOS Em primeiro lugar ao Professor e Orientador José Leomar Fernandes Júnior, que ao logo do desenvolvimento do trabalho soube conduzir a orientação de forma sábia, contribuindo para o meu crescimento científico e intelectual. Agradeço também pela amizade, pelo apoio e pela compreensão, que muito contribuíram para a superação das dificuldades que surgiram ao longo do caminho. Ao CNPq pela concessão de uma bolsa de doutorado, ao Programa de Pós-Graduação em Engenharia de Transportes da EESC-USP, à UFBA pelo apoio aos levantamentos de campo e liberação em tempo integral para dedicação ao doutorado, e ao DERBA por ceder os dados para a execução desta pesquisa. Aos Professores e demais funcionários do Departamento de Transportes da EESC pela colaboração e apoio, indispensáveis à conclusão deste trabalho. Aos amigos do Departamento de Transportes, pela amizade e apoio fundamentais para o desenvolvimento deste trabalho, em especial: Jesner, Vivian, Luis Miguel, Marcos Bottene David Grubba, Walter e Francis. Aos amigos do laboratório e da secretaria do Departamento de Transportes da EESC, pelo companheirismo e convívio diário, em especial: Paulo Toyama, João e Alexandre. Aos amigos do Departamento de Transportes da UFBA, pela amizade e apoio à minha liberação das atividades como professor da UFBA, para a realização do curso de doutorado, em especial: Artur e Élio Fontes. Aos meus pais Lauro e Maria Leodona, aos meus irmãos Ralf, Rômulo, Roger e Solange, pelo apoio e incentivo, e à minha esposa Ana Cristina, pela paciência, amor e dedicação. Aos amigos que receberam a mim e a minha esposa em seu rol familiar, preenchendo o vazio deixado pela distância que nos separa das nossas famílias, e que, em breve, receberão a nossa Cecília. Em especial: Sr. José Leomar e Sr.ª Olga, Paulo Segantine e Carmen. À Deus, por ter dado saúde e vitalidade a mim, e a todas essas pessoas que, de alguma maneira, contribuíram para que eu chegasse ao final deste trabalho. Palavras-chave: Pavimentos asfálticos. Sistemas de Gerência. Modelos de Desempenho. Irregularidade longitudinal 9 ABSTRACT SONCIM, S. P. Development of performance prediction models for asphalt pavements based on data from the highway network of the State of Bahia, Brazil. 2011. 241 f. Thesis (Ph.D.)-Engineering School of Sao Carlos, University of Sao Paulo, Sao Carlos, State of Sao Paulo, Brazil, 2011. The objective of this thesis was to develop performance prediction models for asphalt pavements in the State of Bahia. The performance models were developed for hot-mix asphalt (HMA) and double surface treatment (ST). Information was obtained from a database maintained by DERBA (State of Bahia Department of Transportation), with data collected in 2004, and from additional collection of data, mainly of pavement roughness, performed in 2009 and that was based on an experimental design for this specific purpose. Two statistical analyses were used to assess the significant factors and define the parameters of the performance models: Exploratory Data Analysis (EDA) and An...
Resumo: Este trabalho apresenta o desenvolvimento de um modelo de previsão de irregularidade longitudinal para a malha rodoviá-ria, em tratamento superficial duplo, do estado da Bahia. Teve como ponto de partida um planejamento fatorial, elaborado com base em informações de um banco de dados de rodovias, fornecido pelo Departamento Abstract: This paper presents the development of a roughness performance prediction model for surface treated asphalt highways. It is based on a factorial experiment design developed with data from the State of Bahia Department of Transportation, Brazil, and also from data collected in 2009, when approximately 3,000 km of highways were traveled and 650 km of roughness survey were performed. The factors considered were pavement age, traffic volume and climate, the last one mainly in terms of rainfall. An Analysis of Variance was performed to assess the significance of the factors and to define the parameters of the performance model. The model was compared to other roughness prediction models and showed better correlation between observed and predicted values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.