Pharmacokinetics of liquiritigenin, a candidate for inflammatory liver disease, and its two glucuronide conjugates, M1 and M2, were evaluated in rats. The hepatic and gastrointestinal first-pass effects of liquiritigenin were also evaluated in rats. After oral administration of liquiritigenin at a dose of 20 mg kg(-1), 1.07% of the dose was not absorbed from the gastrointestinal tract up to 24 h, and the F-value was only 6.68%. In vitro metabolism of liquiritigenin in S9 fractions of rat tissues showed that the liver and intestine were major tissues responsible for glucuronidation of liquiritigenin. The hepatic and gastrointestinal first-pass effects of liquiritigenin were approximately 3.67% and 92.5% of the oral dose, respectively. Although the hepatic first-pass effect of liquiritigenin after absorption into the portal vein was 57.1%, the value was only 3.67% of the oral dose due to extensive gastrointestinal first-pass effect in rats. Therefore, the low F-value of liquiritigenin in rats was primarily attributable to an extensive gastrointestinal first-pass effect although liquiritigenin was well absorbed. Compared with rats, the higher F-value of liquiritigenin could be expected in humans.
Pelubiprofen is a non-steroidal anti-inflammatory drugs (NSAIDs) that is related both structurally and pharmacologically to ibuprofen. Anti-inflammatory properties of ibuprofen are due to its ability to both decrease prostaglandin synthesis by inhibiting the activities of cyclooxygenases (COXs) and IκB kinase-β (IKK-β). However, the exact mechanisms that accounts for the anti-inflammatory effects of pelubiprofen are not reported. In this study, we investigated the molecular mechanisms how pelubiprofen modulates the inflammatory mediators in LPS-induced macrophages and carrageenan-induced acute inflammatory rat model. Pelubiprofen potently diminished PGE(2) productions through inhibition of COX enzyme activity (IC(50) values for COX-1 and COX-2 are 10.66 ± 0.99 and 2.88 ± 1.01 µM, respectively), but also reduced the expressions of COX-2, inducible nitric oxide (iNOS), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 at transcriptional level in LPS-induced RAW 264.7 cells. In addition, pelubiprofen attenuated the LPS-induced transcription activity and the DNA binding activity of NF-κB, which was accompanied by a parallel reduction of degradation and phosphorylation of inhibitory kappa B-α (IκB-α) and consequently by decreased nuclear translocation of NF-κB. Furthermore, pelubipofen inhibited the LPS-induced phosphorylation of IKK-β and transforming growth factor-β activated kinase-1 (TAK1). In acute inflammatory rat model, pretreatment with pelubiprofen inhibited carrageenan-induce edema, neutrophil migration, PGE(2) production, and p65, a subunit of NF-κB, nuclear translocation in inflamed paw. Taken together, our data indicated that pelubiprofen is involved in the dual inhibition of COX activity and TAK1-IKK-NF-κB pathway, revealing molecular basis for the anti-inflammatory properties of pelubiprofen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.