Background:
Treatment of neurological diseases using systemic and non-surgical techniques
presents a significant challenge in medicine. This challenge is chiefly associated with the condensation
and coherence of the brain tissue.
Methods:
The coherence structure of the brain is due to the presence of the blood-brain barrier (BBB),
which consists of a continuous layer of capillary endothelial cells. The BBB prevents most drugs from
entering the brain tissue and is highly selective, permitting only metabolic substances and nutrients to
pass through.
Results:
Although this challenge has caused difficulties for the treatment of neurological diseases, it
has opened up a broad research area in the field of drug delivery. Through the utilization of nanoparticles
(NPs), nanotechnology can provide the ideal condition for passing through the BBB.
Conclusion:
NPs with suitable dimensions and optimum hydrophobicity and charge, as well as appropriate
functionalization, can accumulate in the brain. Furthermore, NPs can facilitate the targeted delivery
of therapeutics into the brain areas involved in Alzheimer’s disease, Parkinson’s disease, stroke,
glioma, migraine, and other neurological disorders. This review describes these methods of actively
targeting specific areas of the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.