Chalcones possess various biological properties, for example, antimicrobial, anti-inflammatory, analgesic, antimalarial, anticancer, antiprotozoal and antitubercular activity. In this study, naphthylchalcone derivatives were synthesized and characterized using H NMR C NMR, Fourier transform infrared and mass techniques. Yields for all derivatives were found to be >90%. Protein-drug interactions influence the absorption, distribution, metabolism and excretion (ADME) properties of a drug. Therefore, to establish whether the synthesized naphthylchalcone derivatives can be used as drugs, their binding interaction toward a serum protein (bovine serum albumin) was investigated using fluorescence, circular dichroism and molecular docking techniques under physiological conditions. Fluorescence quenching of the protein in the presence of naphthylchalcone derivatives, and other derived parameters such as association constants, number of binding sites and static quenching involving confirmed non-covalent binding interactions in the protein-ligand complex were observed. Circular dichroism clearly showed changes in the secondary structure of the protein in the presence of naphthylchalcones, indicating binding between the derivatives and the serum protein. Molecular modelling further confirmed the binding mode of naphthylchalcone derivatives in bovine serum albumin. A site-specific molecular docking study of naphthylchalcone derivatives with serum albumin showed that binding took place primarily in the aromatic low helix and then in subdomain II. The dominance of hydrophobic, hydrophilic and hydrogen bonding was clearly visible and was responsible for stabilization of the complex.
Functionalized MCM-41 constitute a group of potent hybrid catalysts for organic reactions. Their pore size is large enough to house large substrate molecules, the large bulk of surface silanol groups helps in introduction of a variety of functionalities required for the catalytic action. The current review emphasizes the broad methodology for the synthesis of these catalysts, effect of functionalization on reaction parameters, stability, efficiency, selectivity, reusability along with limitations of these catalysts to organic transformations, from a green chemistry standpoint. Some selected mechanisms of catalytic action are also highlighted. The review demonstrates that surface functionalized MCM-41 constitute innovative and need based catalyst systems that catalyze reactions like Sonogashira, Suzuki, Heck, Friedel Craft reaction, Aldol and Knoevenagel condensation etc. Several other reactions like oxidation, reduction, dehydration, esterification, epoxidation, CÀ S, CÀ N, CÀ O and SÀ S coupling as well as multicomponent synthesis of bioactive heterocycles have also been reported. It is hoped that this review will improve the understanding of scientific community on how these versatile catalysts operate and will provide opportunities to further enhance their utility for chemical industry.
Privileged scaffolds are ubiquitous as effective templates in drug discovery regime.
Natural and synthetically derived hybrid molecules are one such attractive scaffold
for therapeutic agent development due to their dual or multiple modes of action, minimum
or no side effects, favourable pharmacokinetics and other advantages. Coumarins and
chalcone are two important classes of natural products affording diverse pharmacological
activities which make them ideal templates for building coumarin-chalcone hybrids as effective
biological scaffold for drug discovery research. Provoked by the promising medicinal
application of hybrid molecules as well as those of coumarins and chalcones, the
medicinal chemists have used molecular hybridisation strategy to report dozens of coumarin-
chalcone hybrids with a wide spectrum of biological properties including anticancer,
antimicrobial, antimalarial, antioxidant, anti-tubercular and so on. The present review provides a systematic
summary on synthetic strategies, biological or chemical potential, SAR studies, some mechanisms of action
and some plausible molecular targets of synthetic coumarin-chalcone hybrids published from 2001 till
date. The review is expected to assist medicinal chemists in the effective and successful development of coumarin-
chalcone hybrid based drug discovery regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.